Quality Driven
Development

Interacting with BDD/TDD

Hadar Ziv and Vijay Krishna Palepu
Department of Informatics
University of California, Irvine

Brief History (Vijay Krishna Palepu)

e PhD student in software engineering at UCI.

e Always thought that debugging took too much time; needs to be improved!
e Spider Lab, UCI.

e Actively researching Software program analysis and visualization.
e Palepu, Xu, Jones, “Improving Efficiency of Dynamic Analysis with Dynamic

Dependence Summaries,” 2013 International Conference on Automated
Software Engineering.

e Palepu, Jones, “Visualizing Constituent Behaviors within Executions,” 2013
International Working Conference on Software Visualization.
e Working on a software visualization project called “The Brain”.
e Worked as a software engineer in a startup for 11 months.

e Computer Engineer with Distinction, University of Pune, India.
e Bronze Medal, AWES Scholarship, youngest Student Council Member.

The Brain

Brief History (Hadar Ziv)

PhD, UC Irvine, coined the “Uncertainty Principle in Software Engineering”
— | was just inspired by Heisenberg and Heisenbugs...
— About 50 refereed publications, many research collaborations, since...

Rational-certified trainer in OOAD/UML, RUP, Rose...

Taught many both in academia and industry
— Capstone design project for Informatics seniors, game-design seniors starting in 2014
— 2003 UCI Excellence in Teaching award
— Fall 2013, 250 students in Introduction to Software Eng...

Many successful training and consulting engagements
— TitlePoint by Property Insight (Fidelity National Title)

e Requirements 2003, introduced 2004, alive and well and well used...
— Unity for medical-device product-families by St. Jude Medical
e Requirements 2004-2007, introduced Sept 2007, alive and well...
Among 28 who signed the “New Deal” for software development, 2013
— Along with Grady Booch, Philippe Kruchten, Scott Ambler, Walker Royce...

Ziv's Law

LMERIQner SgnUTeg For your noma.

Sonim Log Jeff Sutherand. Origins of Scrum
sorum.jeffsutherand comEO07 A0 N arigins-af-scrum biml =

Ji 5, 2007 - Zns law - speciicalions Wikl never be Paly ncarsiood, Humohroy's s
iho usor will never Lnow what they wanl umil afler tha syslem s in ...

fow peopln are owane of Fiv's Law, thal softeane desseopmient s unprediciabid11]. Tho
{alure mbe 0 projects wondwade IS ower B5%, lamgaly doo ko kack ol .

Youvo visced ihs page 4 limes. Last vell 728013

S *L sws” of Sofhwares Developmeant - Simple Talk

hitpsawew mmple-lalk com. _Ssoma - laws-of-scéftware-devalopments =

May 17, 2015 - Tlv's law alalas sl saflwses davalapmant is wnpreciclatde asd thal
Spedclicaliong sl roquiramania will paver b Tuly gesloreioed,

AL TIE LT (8 LIV B LW, 1K= =
nHps. dbaithar comiSemim Tukastal g3 244033108651 51184 ~
apr 18, 2073 « Zw's Law: Softeane Dovelopmaent 15 Inhenenty Urpredeciabis agile
Fzomim Mean skanban. Reply. Febyest Hobyvesfiod: Dalele; Favonbe ...

wyay glhdashara, natinaghjaniagile-ip-tha-naw-waiertall =
Hprie AHE - Lcensed Unde™ Creabme Commaons By Mamesh Jain Toorsday, &gorl 30
S0 53 Acgle s Deaigned Lo deal with Di's e - dpecifcaliang will ,,

Its Mot Just & Good ides, fis The Law - Techoo-Man!

wvew lechno-man.nedl. In-whick-our-process-challenged-marsapiakblear.. =
Way 28, 207035 - bn dhe indeg, Jel¥ igtks aboul Some of T acceplead Tevwa wetfa The scnam
produes, apecilicaly Comay, Hornpfeay and Ziv'e laws, And while

Lessons Learned (from my Brief History)

e When giving a public presentation...
— Do not give a brief history since time immemorial
— Do not (re)define and (re)visit well-known terms
— Do not define new terms
— Do not show code, or give hands-on assignments
— Whatever you do, do not mention Waterfall
— Whatever you do, do not criticize Agile

— Whatever you do, do not criticize the Government
e Therefore...

Presentation Outline

Revisit well-known terms and well-known software “history”
— Software bloat

— Agile, Testing

— Mention Waterfall

Introduce and define new terms
— TDD, BDD
— Mention Waterfall

Show code
Manage interactive ‘audience participation’
Constructive criticisms

In the beginning...
(Brief History of Software)

)

1969: Software Engineering/The software “crisis’

1970: The Waterfall Model (Royce)

1975: The Mythical Man-Month (Brooks’ Law)

1980: The Spiral Model (Boehm)

1986: No Silver Bullet (Brooks)

1980s object-oriented design/programming

1990s OOAD/UML, Java

1999: XP (Kent Beck, et al)

2001: The Agile Manifesto, Agile Modeling, ...

1997 Software is a Gas (Myhrvold’s First Law)

e http://www.informationisbeautiful.
net/visualizations/million-lines-of-code/

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

October 1, 2013

“‘Spoken to any software developers about HealthCare.gov?
It seems that every conceivable principle of software
development was and is being violated

It is the ultimate source of compelling illustrations of what not
to do

Whether the issues are requirements, design, testing,
deployment, or management, it is replete with anti-patterns
From the oldest lessons captured in the Mythical Man-Month
to the latest best practices in website architecture,
HealthCare.gov seemingly has gone the opposite direction”

(Prof. Taylor, UCI Department of Informatics, ISR Newsletter)

Agile Development

“Problem Statement”

Problem: Accommodating shorter and shorter
ousiness cycles

Long software projects...
— (one year, two years, or longer...)

— Exceed budget, blow through schedule, deliver
something less than desirable (if at all)

— Usually end up with a ‘waterfall’ or function-driven
process

— From functional specs...
e Usually in text format, ‘shall’ statements, or use cases

— To design to code to test to deployment

Agile Solves the Problem

As if that wasn’t enough...

— The pace of technological advance and human expectations...

— Makes it less and less likely that a multi-year project will ever succeed
Hence

— Most “agile” projects are 90, 120, or 180 days

— Iterative and Incremental Development (IID)

— Longer than 180 days is considered “high risk”

Developers like IID. Every two weeks they get
— Closure/satisfaction/sense of doneness
— Something new to work on

Managers like it too
Clients like it too
“Amazing yet true”... Who said this?!?

But... Not so Fast...

e Agile works well in the
micro (small team) level
— Not so clear for large
teams, macro-level
projects
e Someone smart warned
about “No Silver Bullet”...

e Someone wrote “agile” s
statements before Agile R
was invented...]AVA

— FDD: Feature Driven 2EILEN
Development

— Others...

So... What is Agile... after all

Sure, the manifesto
— Individuals and interactions over processes and tools, etc.
Sure, the principles

— Valuable software, deliver frequently, continuous integration and
delivery, motivated individuals working together, etc.

Iterative and Incremental Development and Delivery

A process framework or “philosophy”
— Instantiated by specific methods, e.g., SCRUM, Kanban, Lean
— lterations, sprints, product backlog, burndown chart, etc.
— Micro vs. Macro, Scalability issues

Be Sure to Remember...
— No Silver Bullet
— Evolutionary, not Revolutionary

Software Testing

Software Testing In a Nutshell

e Part of Quality Assurance
e EXxpected Behavior vs. Actual Behavior

utput—> Oracle

k—) Sucess

“Testing proves the presence of bugs, not
absence” - Dijkstra

BUT WHENI DO;I PREFER TODOIT IN

PRODUCTION

Testing is about confidence.

RATBERT, MY COMPANY
IS HIRING FOR QUR
QUALITY ASSURANCE
GROUP. YOU'D BE PFRFECT.

) LHAT LIOULD
% I HAVE TO DO?
;I ; HE

BUT THEM YOU'D FIX

THOSE FLAWIS... AND

YOUR, RESPECT FOR ME
LIOULD GROW TNTO

A SPECIAL BOWD OF W

FRIEMDSHIF, | WE sHIp
RIGHT 7! ﬁ;&)/ :

YOU WOULD FIND FLALS
IN OUR NEL PRODUCT,
THUS MAKTING YOURZELF
AN OBTECT OF TMTENSE
HATRED AND RIDICULE.

)

|

R

-l"lll"|"'|‘"|ﬂ O VeEE Lisited Fasture Syadicats, ing (WYL

SAdys Eemall BEOTTADAMSSAOLEOUN

Testing is about the people.

D-tour: Process Models

In the beginning ...

Feasibility
Study

Requirements
Analysis and
Specification

Design and
Specification
Coding and
Module
Testing
Integration
and System
Testing

Delivery and
Maintenance

The Waterfall Model of Software Development (Royce 1970)

In the beginning ...

Feasibility
Study

Requirements
Analysis and
Specification

Design and
Specification

Delivery and
Maintenance

The Waterfall Model of Software Development (Royce 1970)

V-Model

Requirement Acceptance Acceptance
s Analysis Test Design Testing
System System Test System
Design Design Testing
Architecture Integration _| Integration
Design Test Design : Testing
Mod.ule 4 Unit Test Unit Testing
Design Design

l

Coding

V-Model

l

Coding

Requirement Acceptance Acceptance
s Analysis Test Design Testing
System System Test System
Design Design Testing
Architecture Integration Integration
Design Test Design Testing
Mod.ule 4 Unit Test Unit Testing
Design Design

V-Model

Requirement

s Analysis

System
Design

Architecture
Design

Module
Design

Acceptance
Test Design

System Test
Design

Integration
Test Design

Unit Test
Design

Acceptance
Testing

System
Testing

Integration
Testing

Unit Testing

Coding

TDD

Requirement
s Analysis

\ System

Design

Acceptance
Test Design

Architecture
Design

System Test

Acceptance
Testing

System

Design Testing
Integration Integration
Test Design Testing
esIo

Behavior Modeling

Requirement
s Analysis

Acceptance
Test Design

Acceptance

Architecture
Design

System Test
Design

Testing

Integration
Test Design

System
Testing

Testing

Integration

Unit Test
Design

Unit Testing

l

Coding

BDD

Requirement

Acceptance

Acceptance

Testing

s Analysis Test Design
System System Test - System
Design Design i Testing
Architgcture Integratign Integrgtion
Design Test Design Testing
Mod.ule Unit Test > Unit Testing
Design Design

l

Coding

BDD

Requirement

Acceptance Acceptance
Test Design Testing

s Analysis

Agile + Testing

Agile Sot{ware
Development TesTing

Simplicity Confidence

Incremental "n' Iferafive

Stakeholders ..
Cusfomers . People

Agi\e + Testing

Automaled Accepiance Tes{ Driven Development

Agile Sot{ware
Development TesTing

Simplicity Confidence

Incremental "n' Iferafive

Stakeholders ..
Cusfomers . People

Agi\e + Testing

Quality Driven Development

Behavior Driven Development (8pp)

Dan North’s “Introducing BDD” - http://dannorth.net/introducing-bdd/

Idea:
- Model Requirements as User Stories.
User Story
As a [X]
| want [Y]
So that [Z]

- Define Acceptance Criteria/Tests as Scenarios.
Scenario
Given some initial context
When an event occurs
Then ensure some outcomes.

- Derive Code for Test cases using the formats for
Scenarios.
- Derive Code for Classes using the Scenarios.

Summary:
e Define Behavior (Requirements)
e Define+Derive Tests for Behavior
® Implement Functionality for Behavior
® Test Functionality against Behavior
(automated test cases)
® |terate

http://dannorth.net/introducing-bdd/

Example

Grammar Rule: Spell out numbers in written English.

User Story: Translate Numbers from

Numerals to Words in English

As a Newspaper Editor,

| want to edit newspaper articles to translate
numerals into actual words,

so that | can have the satisfaction of following an
esoteric rule of English Grammar.

Scenario: Number is 1
Given numberis 1

When translated to words,
Then translation is “one”.

Scenario: Number is 2
Given number is 2

When translated to words,
Then translation is “two”.

Scenario: Number is 9
Given numberis 9

When translated to words,
Then translation is “nine”.

Scenario: Number is 10
Given number is 10

When translated to words,
Then translation is “ten”.

Scenario: Number between 13 and 19
Given number is less than equal to 13
and number greater than equal to 19
When translated to words,

Then translation ends with “teen”
and translation has one word.

Scenario: Two digit number starts with 2
Given number has two digits

and number starts with 2

When translated to words,

Then translation starts with “twenty”.

Scenario: Two digit number starts with 9
Given number has two digits

and number starts with 9

When translated to words,

Then translation starts with “ninety”.

Scenario: Number is positive integer
Given number is greater than O

And number is not a fraction or decimal.
When translated to words,

Then translation should not use “minus’

)

Scenario: Positive integer ends with 0
Given number end with O

and number is not a fraction or decimal.
and number is positive

When translated to words,

Then translation should contain only
one word

Scenario: Number is negative integer
Given number is less than O

and number is not a fraction or decimal.
When translated to words,

Then translation should start w/
“minus”

Scenario: Number is greater than one
billion

Given number greater than one billion
When converted to words,

Then do not translate to words,

And notify of such occurrence

And record article, page# and line.

Scenario: Number is decimal or large
Given number greater than one billion
Or number is a decimal

When converted to words,

Then do not translate to words,

And notify of such occurrence

And record article, page# and line.

Scenario: Number is a decimal
Given number is a decimal

When translated to words,

Then do not translate to words,
And notify of such occurrence
And record article, page# and line.

TDD/BDD

Requirement

Acceptance

Coding

Acceptance
s Analysis Test Design Testing
System System Test - System
Design Design i Testing
Archite:cture Integratign Integrgtion
Design Test Design Testing
esIo

TDD/BDD

BDD came from TDD.

o Requirement Modelling vs. Module Modelling.

O

{

‘Behaviour” is a more useful word than “test” - D. North

o BDD lends structure and method to tests/testing.
TDD revived and encouraged testing again!

But, TDD was still focused on the tester and the
code.

BD

D takes the focus away from tester and code;

BD

D puts focus on client and product behavior.

Hands On Assignment

User Story: Sign up online for
Health Insurance.

As the head of my family,

| want to create an account on the
health insurance website,

So that | can purchase health insurance
for my family and myself.

Create Account - Individual & Families

Name *

Suffix v

Email Address 7 Username *

Date of Birth * Social Security Number

Scenario: User forgets to enter Last Name
Given “First Name” field is entered

and “Last Name” field is empty

When user starts filling out “Email Address” field
Then highlight that “Last name” is required.

Home Address * No Home Address

County v

Mailing Address * Select if it's the same as Home Address

County v

Scenario: City and Zip code match

Given “City” field is filled in “home address” section,

When “Zip” field is filled in “home address” section,

Then “Zip” field contents should be valid w.r.t “City” field contents.

Contact Phone

Phone Number * Phone Type

Cell v

Second Phone Number (Optional) Phone Type

Home v

Scenario: International country code is recognized as valid.

Given “Phone Number” field is filled in “Contact Phone” section,
and “Phone Number” field contains the international country code
When user moves away to a different field

Then the contents of the “Phone Number” field is marked as valid
and no error message is displayed.

Password and Security

Password * (Password must be at least 8 characters long, contain at least 1 uppercase, 1 lowercase, 1 numerical digit,
and should not contain user ID, first name, or last name)

Confirm Password *

In case you forget your Password

Secret Question 1 * Answer to Secret Question 1
select v

Secret Question 2 * Answer to Secret Question 2
select v

Secret Question 3 * Answer to Secret Question 3
select v

Scenario: Passwords should never be in plain text

Given “Password” field is filled

When user moves away from “Password” field,

Then contents of the “Password” field should not be displayed in
plain text.

Contact Preferences

Preferred Spoken Language * Preferred Written Language *

English v English v

Preferred Method of Contact

Email

In the mail

Authorization Attestation*

| have read and agreed to the Terms of use*

I am the primary user/account holder.

| am a registered Customer Service Center Representative or Authorized Representative and have the authority to act
on behalf of this individual.

Scenario: Confirmation page after clicking Create Account
Given user is done filling out the form

When user clicks the “Create Account” button,

Then a confirmation page showing all the entered information
should be displayed.

In Summary: Agile

e Agile ideas/principles/methods have been around
longer than Agile

— Many are simply sound SE principles and lessons
learned

— Agile is No Silver Bullet

e XP/Agile started out at the micro (team) level
— Still excel there

e Waterfall still has value at the macro level
— Water-SCRUM-Fall is not necessarily bad
— Agile at Scale, Scalable Agile Framework (SAFe)

In Summary: Testing

Testing is part of a larger quality assurance
strategy.

Testing is (should be) a constant activity
throughout the software lifecycle.

Testing is about Confidence.

e Assurance != Ensurance
e Remember Dijkstra

Many tools for Automation.
e Junit, TestNG, JBehave, Cucumber, etc.

Testing is about the People.
e Client, Developer/Tester

In Summary: Agile + Testing

“Agile + Testing” leads to:

e Automation.

e Focus on Acceptance criteria and tests.
e by extension Requirements, i.e. Behaviors

e Focus on the People.
e Developers/Testers and Clients.

Agile
Development

Simplicity Confidence

Incremental "n' Iferative

Stakeholders ..
Customers . People

Agile + Testing

Quality Driven Development

