
SPIDER SENSE: Software-Engineering, Networked,
System Evaluation

Nishaanth H. Reddy, Junghun Kim, Vijay Krishna Palepu, and James A. Jones
University of California, Irvine, USA

{nhreddy, junghuk, vpalepu, jajones}@uci.edu

Abstract—Today, many of the research innovations in software
visualization and comprehension are evaluated on small-scale
programs in a way that avoids actual human evaluation, despite
the fact that these techniques are designed to help programmers
develop and understand large and complex software. The invest-
ments required to perform such human studies often outweigh
the need to publish. As such, the goal of this work (and toolkit)
is to enable the evaluation of software visualizations of real-life
software systems by its actual developers, as well as to understand
the factors that influence adoption. The approach is to directly
assist practicing software developers with visualizations through
open and online collaboration tools. The mechanism by which
we accomplish this goal is an online service that is linked
through the projects’ revision-control and build systems. We
are calling this system SPIDER SENSE, and it includes web-
based visualizations for software exploration that is supported
by tools for mirroring development activities, automatic building
and testing, and automatic instrumentation to gather dynamic-
analysis data. In the future, we envision the system and toolkit
to become a framework on which further visualizations and
analyses are developed. SPIDER SENSE is open-source and
publicly available for download and collaborative development.

I. INTRODUCTION

The SPIDER SENSE toolkit is a platform to assist de-
velopers’ comprehension of their software systems, and re-
searchers’ evaluation of software-visualization and software-
comprehension tools. It is made with the intention of creating
a symbiotic relationship between software-engineering (and
software-visualization) researchers and software developers.
Software-visualization researchers seek to enable better in-
sight, understanding, and exploration of software subjects
for tasks such as understanding architecture, finding bugs,
understanding commit patterns, and assessing code coverage.
Each of these example tasks can be generalized to be that
of a steep learning curve problem for practicing software
developers, engineers, and project managers.

However, software-visualization researchers often expe-
rience difficulty demonstrating direct impact on software-
development practice. There have been some significant and
notable examples of such direct impact, such as the SEESOFT
visualization, which can be seen in the currently popular SUB-
LIME TEXT editor and development tool. However, much of
software-visualization research has impacted practice through
more indirect routes.

Despite the advantages of such direct application of re-
search, researchers are often reluctant to put their research
techniques and tools into practice. Research prototypes of tech-
niques often suffer from immaturity in their implementations,

which would create barriers to end-user adoption. Developers
who quickly run into instabilities, crashes, or glitches are likely
to abandon these tools without further time investments.

To counteract such difficulties of evaluation, researchers
often utilize means of evaluation that simulate real-world situa-
tions. Two common ways of evaluation are to study students as
a substitute for professional developers or to abstract away the
human developers altogether. Studying students is particularly
attractive for academics as they are readily available and
can be rewarded through means such as course-assignment
credit. Even further complicating this situation is that the
classroom cannot replicate the organizational factors that are
present in practice: for example, a hierarchy of expertise
and authority, organizational policies and constraints, and
customer expectations. For these reasons, program committees
and journal reviewers are often critical of the ability to
generalize evaluation results to software-development practice.
Another method for evaluation is for the experimenter to define
quantitative metrics that are meant to represent effectiveness,
efficiency, or some other desired characteristic. However, these
metrics are often merely proxies for real-world qualities.

The software subjects that researchers use are critical,
regardless of if student experiments are performed or quan-
titative metrics are used. One popular and quite useful re-
source of software subjects is hosted at the Subject-artifact
Infrastructure Repository (SIR) at the University of Nebraska,
Lincoln [4]. The SIR contains many software subjects that
contain faults, versions, and test cases, as well as some test
and build scaffolding that facilitate experimentation. Another
benefit of the subjects in the SIR is that experimenters have
a de facto benchmark suite on which research techniques can
be compared. A danger, however, is that these subjects are
“fixed” — the set of faults, tests, and versions are known,
and techniques can be developed that target these. Such
specialization to these subjects may prove to be an eventual
threat to the generalizability of results.

To overcome these issues and allow software-engineering
and software-visualization researchers to evaluate the actual
utility and benefit of research techniques, we have developed
a toolkit that we are calling SPIDER SENSE. The SPIDER
SENSE toolkit includes tools that enable a number of pro-
cesses: (1) the parallel mirroring of live software development,
(2) automatically generated, up-to-date visualizations of the
software system under observation, (3) automatic building
(i.e., compiling) of the system with each new revision, (4)



automatic running of its test suite, and (5) automatic instru-
mentation to gather dynamic (i.e., runtime) information. These
research visualizations and automated-assistance tools can be
made available almost immediately to the actual software
developers through a web hyperlink, and as such can allow
researchers to get immediate feedback on the utility of their
research products.

Although today’s implementation of SPIDER SENSE is
complete to the point that we have been able to produce
visualizations for several popular, open-source systems, we
envision this framework to be the basis on which we and
others continue to build further visualizations and research
innovations. SPIDER SENSE is open-source and publicly
download-able, and we continue to develop it to support
further build environments and system-specific configurations,
and enable further analyses and visualizations.

II. SPIDER SENSE

The SPIDER SENSE toolkit is composed of a number of
cooperating tools, which we have developed. We created a
build tool that can automatically modify a build script to
enable dynamic analysis of the software subject. We also
created a per-test-case instrumentation tool that allows devel-
opers, researchers, and automated analysis tools to distinguish
the code coverage that was produced for each test case in a
test suite. We then created a software-visualization framework
that runs in a web browser, and as such enables a platform-
independent visualization that can be shared directly with
developers by way of a web link.

A. Build Tool

SPIDER SENSE’s build tool is based on a minimally
intrusive build-strategy for software systems with existing
build processes. Software build processes automate day-to-
day activities in software development such as, compilation,
testing, analysis and deployment of software systems. As such,
the scripts that support build automations for a software system
are often complex and unique to the traits and characteristics
of the software system being built. Even trivial changes to such
complex build scripts can significantly impact the integrity of
the actual software build. With such considerations, instead of
changing the actual build script itself, SPIDER SENSE’s build
tool makes use of the final results of the software build, i.e.,
binaries for the software system, its software-tests, and any
external dependencies. Given the binaries for the software sys-
tem and its tests, the build-tool runs an instrumented version
of the software system, driven by the binaries of the software-
tests. It is important to note that such instrumented tests are not
meant to replace the execution of the actual (non-instrumented)
tests of the system. In fact, to preserve the integrity of the
actual build process we make special accommodations to run
the instrumented tests independent of the actual tests. Such
instrumented runs enable dynamic analyses of the software
system which are finally used to inform various software
visualizations and comprehension tools.

B. Per-Test-Case Coverage Tool

As a part of the SPIDER SENSE toolkit, we developed
a simple code coverage tool called TACOCO1 that not only
provides coverage data for the software system as a whole,
but also provides the exact set of source-code lines that were
executed by each individual test case.

Coverage data provided by code coverage tools help soft-
ware developers identify parts of their software system that
were seldom or never exercised by the software system’s test
suite, thus indicating untested or potentially defunct parts of a
software program; ultimately improving software quality. Most
code-coverage tools (e.g., Cobertura and JaCoCo) compute
a single execution-profile (i.e., the number of times a set
of software source-code lines were executed) for the entire
software system from the beginning to the end of an entire test-
suite’s execution. As a consequence, code coverage is often
computed by treating the software system and its test suite as
monolithic entities.

However, different test-cases in a test suite are often de-
signed to test varying aspects of the software system. For
instance, unit tests are written to test individual modules of
the software system, in isolation from the rest of the system.
Integration tests are designed to test the various ways by which
different modules of the system interact with each other. And
system tests verify the system wide workings of the software.
As such, individual tests not only exercise and verify unique
parts, but also unique facets of the software system. Thus, by
knowing the exact parts covered by each such individual test-
case, SPIDER SENSE can provide insight into the purpose of
the individual test-cases, and also highlight the various facets
of the software system.

Moreover, several automated software-engineering research
innovations depend upon per-test-case coverage information,
such as spectra-based fault localization (e.g., TARANTULA [7])
and regression test selection (e.g., DEJAVU [9]). In the past,
researchers have achieved per-test-case coverage by running
the instrumented program with each input as if it were the
entire test suite, then saving and resetting the coverage state
for the next input. However, with the JUNIT test framework,
individual test cases are contained with methods, further con-
tained within test-case classes. As such, starting and stopping
instrumentation for individual methods is not as straightfor-
ward, particularly when considering shared set-up and tear-
down routines and other advanced testing mechanisms, such
as parameterized test runners.

TACOCO computes the per-test-case coverage by maintain-
ing an individual execution profile for each individual test-
case-method execution. Our current implementation does this
specifically for the JUNIT test-framework, where the execution
of a test-method inside a test-class is treated as an individual
test-case execution. TACOCO tracks the moments in time when
the execution of a test-method begins and the moments in time

1TACOCO is developed and maintained as an open-source project on Github:
https://github.com/spideruci/tacoco. Along with the implementation for the
per-test-case coverage tool, TACOCO also comes with an implementation of
the build-tool that was described in Section II-A.

2

https://github.com/spideruci/tacoco


Fig. 1: Treemap view in SPIDER SENSE of the package hierarchy of the JODATIME Java library’s main source code.

Fig. 2: Seesoft view in SPIDER SENSE of the Days.java
source file, with lines executed by passing tests colored in
green, with the Tarantula suspiciousness metric.

that the executions returns back from a test-method during
a JUNIT test-suite execution. Using this timing information,
provided through event listeners, at the beginning of a test-
method’s invocation, SPIDER SENSE creates a fresh instance
of the data-structure that stores the execution profile that
indicates that the test-method has executed no source-code
so far. And just before a test-method is about to return,
the current state of the execution-profile for the test-method
is saved in a dictionary, with the test-method as the key.
This enables the storage of execution-profiles and finally
the coverage information, on a per-test-case basis. Moreover,

this approach, which is based on the dynamic observations
of execution, can properly accommodate parameterized test
runners in which the same test-method is called repeatedly
with different “parameters.”

C. Web-Based Visualizations

The web-based visualization2 presented in the SPIDER
SENSE toolkit is comprised of many components controlled
by event listeners using the D3.JS library [2] . The system
makes asynchronous web requests whenever a new view is
opened. The system can be broadly broken down into the
following parts:

1) Navigation Bar: The web-based visualizations in SPI-
DER SENSE are guided with a navigation bar, as shown in
Figure 1, at the top of the visualizations with the functionality
needed to carry out all the view switching, zooming and
searching that is required. The navigation bar is intuitively
designed to make space for tabs containing different visual-
izations. The zoom bar is linked to the currently opened view.
The search bar is designed to auto-complete search queries and
will open the file that is searched in a new tab, as shown in
Figure 1. The tab system is designed to support independent
canvases for any general purpose visualization and as such,
serves as a point of extension for integrating new visualizations
and tools into SPIDER SENSE.

2) Treemap: Upon providing the details about the GitHub
repository and username, a web API request is made to
obtain the details about the file structure, file sizes and recent
commit information for the corresponding software system.
These values are used to create a treemap view of the files
present in the GitHub repository, using the D3.JS visualization

2The web-based visualization is maintained in a public git repository called
SENSE VIS:https://github.com/spideruci/sense-vis

3

https://github.com/spideruci/sense-vis


framework. Each rectangle represents a source file or package,
and the size of the rectangle is proportional to the number of
lines of code in that represented entity. Secondary information,
such as the recency of file commits, is configured into the
visualization using the brightness of the rectangular elements
in the treemap. On clicking any rectangle, one can move a
folder down the hierarchy, and this is captured in the treemap
by means of transitions and zooming. A right-click opens the
file in a new tab in the Seesoft view (Section II-C3). On
opening a Seesoft view, the treemap view is hidden until the
treemap tab is clicked.

3) Seesoft: The Seesoft view, as shown in Figure 2, displays
the source code in a “zoomed-out” fashion, and it colors the
lines of code in a parameterizable way so as to allow for
different visualizations and applications. Every line of code
is made interactive and zoomable by using event listeners.
When zoomed out, clicking on any line of code would zoom
in and auto-scroll the line of code selected. A double-click
redirects the user to the GitHub page with the line of source
code highlighted. As a sample application of the Seesoft
visualization we compute the suspiciousness values, using the
Tarantula metric [7] for fault localization, for every line of
code with respect to the per test case code coverage generated
with TACOCO.

Figure 2 shows the Seesoft view of the Days.java,
while highlighting the lines executed with passing test cases.
Note that at the time of testing SPIDER SENSE all tests
for JODATIME were passing, and as such we found that all
executed lines were colored with green. Further, as a conse-
quence of augmenting the Seesoft view with runtime data,
non-executable source-lines such as comments and method
declarations were left colorless, making them distinctly vis-
ible against the executable lines of code. Such examples of
immediate feedback and insight about real world projects were
possible when data about the software system was presented
as a visualization.

III. DEMONSTRATION

We will now present a brief walk-through of the SPIDER
SENSE toolkit using the software system JODATIME as a
concrete example of a software system that we need to
setup for analysis. The purpose of this walk-through is to
demonstrate the basic usage of SPIDER SENSE. There are
three basic steps involved in setting up any software subject
for analysis, either by a software researcher or a software
developer who is trying to better understand the software
subject: (a) building the software subject; (b) gathering runtime
data about the software; (c) and finally visualizing the runtime
data to better comprehend the software. We will start with
building the software subject.

A. Building the Software Subject

To apply SPIDER SENSE to the new software subject,
JODATIME, we first obtain a copy of JODATIME by sim-
ple cloning a public version of its git repository hosted

at GitHub.3 Upon obtaining the repository, we notice that
JODATIME’s build system uses maven, and so we simply build
the project with the command mvn test, which compiles
the main-system- and test-source-code for JODATIME into
executable binaries and runs all available unit tests. Running
the actual, non-instrumented tests allows us to verify that the
system actually builds correctly. Once we have verified that the
system actually builds successfully without any instrumenta-
tion, we use TACOCO to carry out an instrumented execution
of the test-cases using the binaries for the actual JODATIME
library and its test-suite.

B. Gathering Runtime Analysis Information

Next, we use TACOCO to get per-test-case code coverage
information. We first obtain TACOCO from its public repos-
itory4 and build TACOCO using MAVEN, i.e., we execute
the command mvn test, just like we did with JODATIME.
Next, we will run the instrumented version of JODATIME, by
using a shell script command called run-tacoco that takes
two inputs: the paths to the software builds of JODATIME
and TACOCO. The script can capture all of the library de-
pendencies, build configurations, and directory structures that
are necessary to build, test, and instrument the program by
executing a series of MAVEN commands. In this way, the build
script does not need to be modified in any way, but can still
benefit from the automation provided from it. The execution
of this script will result in an instrumented run of JODATIME’s
test cases, and it will run all of the test cases that mvn test
ran, to finally produce the per-test-case code coverage data file
for all tests. This code coverage data file can be converted into
a suitable JSON file format to be consumed by the web-based
visual interface, in our final step in setting up JODATIME.

C. Displaying Software Visualizations

Once we convert the code-coverage data file into a suitable
JSON format, the files are uploaded a location that is refer-
enced by the web-based visualization. The SPIDER SENSE
visualization then uses this coverage information to color the
source-code lines for individual files as shown in Figure 2.
While the build tool provides us with the coverage data, the
web-based visualization is capable of independently obtaining
the project’s source-code data from GitHub and displaying it
as a Treemap view, as shown in Figure 1.

Once this setup is complete, the user (researcher or devel-
oper) can open the SPIDER SENSE dashboard and load the
required software project by providing details of its Github
repository. The user can then navigate to the file of interest
by simply performing a search as shown in Figure 1, where
the results for the querry “Days” are presented. On opening
the Seesoft view for a given file (e.g., Days.java) the
user would be able to see the lines of code colored by their
suspiciousness values. The user would also potentially be able
to open the Seesoft views for other files and investigate the
suspiciousness values across different source files. This would

3JODATIME is hosted at https://github.com/JodaOrg/joda-time
4https://github.com/spideruci/tacoco

4

https://github.com/JodaOrg/joda-time
https://github.com/spideruci/tacoco


provide the user the required information to carry out a basic
fault localization task, given a set of failing tests.

IV. RELATED WORKS

Eick et al. developed the Seesoft visualization [5] that we
use in displaying individual source file. Our implementation
is, however, zoomable to enable exploration of the details in
context. Moreover, our implementation is web-based, and as
such allows users to view the visualizations on any platform
capable of loading HTML5 web content.

Blackburn et al. developed the DaCapo benchmarking sys-
tem [1] to provide a platform on top of which a variety of
Java project codebases can be tested. Do et al. developed
the Software-artifact Infrastucture Repository (SIR) [4] which
served as a platform for controlled experimentation with
testing and regression testing techniques. DaCapo and SIR
both provide software-subject evaluation platforms but provide
fixed software subjects, as opposed to a framework to easily
add new, live, currently-in-development software subjects and
versions.

Dallmeier et al. presented the IBUGS [3] platform that used
the AMPLE bug-localization tool to extract benchmarks for
bug localization from the history of a project. Although the
vision of IBUGS was to support automatic analysis of new
software subjects, that vision was never achieved in practice
— it supports exactly three hard-coded software subjects
(AspectJ, Rhino, and partially JodaTime). Gousios created
the GHTorrent Dataset and Tool Suite [6] that provided a
REST API that in turn used the GitHub API asynchronously to
collect data from existing GitHub repositories. This is similar
to our work in the sense that it provides opportunities for the
research community, however it does not provide the same
build, test, instrumentation, and visualization facilities that
SPIDER SENSE provides.

Continuous integration systems such as Travis and Jenkins
provide a platforms to build and test existing projects. But
these systems provide simple analytics about passing or failing
builds and test cases. Coveralls5 and Codecov6 are platforms to
check the code coverage of test cases on repositories. These
tools also provide a view of every file showing whether or
not lines of code have been covered. They do not, however,
provide per-test-case coverage information that is needed for
many software-engineering research techniques, nor do they
provide extensible facilities for developing research techniques
and visualizations.

The Gammatella system [8] developed by Jones et al. uses
treemaps and a Seesoft view. In contrast, SPIDER SENSE is
built to support easy adoption of new software subjects in an
up-to-date fashion, and support extensibility to future visual-
izations. However, one perspective that can be seen is that
SPIDER SENSE is an extension of the original Gammatella
work.

5https://coveralls.io
6https://codecov.io

V. CONCLUSIONS

In this paper, we presented a toolkit for mirroring actual,
live, real-world software development, which can then provide
the actual software developers with up-to-date software visu-
alizations for program comprehension. The toolkit, SPIDER
SENSE, provides a web-based interface that supports a guided
exploration of GitHub repositories. We have implemented a set
of tools that comprise SPIDER SENSE that automate or assist
its application onto new software subjects, with minimal effort
by researchers or developers. SPIDER SENSE is open-source
and publicly downloadable to enable open development and
collaboration with other researchers and developers for ours
and additional software-visualization and software-engineering
research innovations.

VI. ACKNOWLEDGEMENTS

We would like to acknowledge the software-development
efforts of Lawrence Yu in the early versions of the per-test-case
code-coverage tool, and of Bixia Si, Max Wei, and Anshuman
Sanghvi for their contributions to the software development
of SPIDER SENSE. This work is supported by the National
Science Foundation under awards CAREER CCF-1350837
and CCF-1116943.

REFERENCES

[1] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and analysis. In
oopsla, pages 169–190, 2006.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. Visu-
alization and Computer Graphics, IEEE Transactions on, 17(12):2301–
2309, 2011.

[3] V. Dallmeier and T. Zimmermann. Extraction of bug localization bench-
marks from history. In Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engineering, ASE ’07,
pages 433–436, New York, NY, USA, 2007. ACM.

[4] H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for controlled
experimentation with software testing and regression testing techniques.
In Proceedings of the 2004 International Symposium on Empirical
Software Engineering, pages 60–70, Washington, DC, USA, 2004. IEEE
Computer Society.

[5] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. Seesoft—a tool
for visualizing line oriented software statistics. IEEE Transactions on
Software Engineering, 18(11), 1992.

[6] G. Gousios. The ghtorent dataset and tool suite. In Proceedings of the
10th Working Conference on Mining Software Repositories, pages 233–
236. IEEE Press, 2013.

[7] J. A. Jones. Semi-automatic fault localization. 2008.
[8] J. A. Jones, A. Orso, and M. J. Harrold. Gammatella: Visualizing

program-execution data for deployed software. Information Visualization,
3(3):173–188, 2004.

[9] G. Rothermel and M. Harrold. Empirical studies of a safe regression
test selection technique. Software Engineering, IEEE Transactions on,
24(6):401 –419, jun 1998.

5

https://coveralls.io
https://codecov.io

