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Abstract—Software engineers organize source code into a
dominant hierarchy of components and modules that may
emphasize various characteristics over runtime behavior. In
this way, runtime features may involve cross-cutting aspects of
code from multiple components, and some of these features
may be emergent in nature, rather than designed. Although
source-code modularization assists software engineers to organize
and find components, identifying such cross-cutting feature sets
can be more difficult. This work presents a visualization that
includes a static (i.e., compile-time) representation of source
code that gives prominence to clusters of cooperating source-
code instructions to identify dynamic (i.e., runtime) features
and constituent behaviors within executions of the software.
In addition, the visualization animates software executions to
reveal which feature clusters are executed and in what order.
The result has revealed the principal behaviors of software
executions, and those behaviors were revealed to be (in some
cases) cohesive, modular source-code structures and (in other
cases) cross-cutting, emergent behaviors that involve multiple
modules. In this paper, we describe our system (CEREBRO),
envisage the uses to which it can be put, and evaluate its ability
to reveal emergent runtime features and internal constituent
behaviors of execution. We found that: (1) the visualization
revealed emergent and commonly occuring functionalities that
cross-cut the structural decomposition of the system; (2) four
independent judges generally agreed in their interpretations
of the code clusters, especially when informed only by our
visualization; and (3) interacting with the external interface of an
application while simultaneously observing the internal execution
facilitated localization of code that implements the features and
functionality evoked externally.

I. INTRODUCTION

Software programmers decompose their program code into
explicit components and modules to enable scalability of the
codebase, reuse of modules, and comprehensibility of the code
design. Early in software-engineering literature (1971), Wirth
observed that decomposition and refinement can be performed
on both program structures and data structures. In later work,
object-oriented design enabled programmers to write code that
was principally organized by data structures and entities, rather
than the algorithmic decomposition that previously dominated.
In other words, object-oriented code today, is principally
structured by “actors” rather than “actions.”

Because of this style of programming, behavioral features
of the software often cross-cut the structural design of the
code, and thus may be difficult to find and identify. Software
behaviors can be identified by the runtime composition and
cooperation of objects’ interfaces, which makes comprehen-
sion of such interactions more difficult. This importance of

visualizing runtime interactions is emphasized by Jerding et
al. [10], in their work on Execution Murals, where they
show how global overviews for a software execution provide
“immediate insight into different phases of the execution”
and enable an execution, specifically execution traces, to be
“searched visually”.

To help programmers understand the runtime behavior of
their code and thus the constituent features within executions,
researchers and tool builders have created interfaces and visu-
alizations. For example, traditional symbolic debuggers allow
programmers to step through a program execution. Jerding
et al. [10], De Pauw et al. [15], Cornelissen et al. [4] and
Trümper et al. [17], for example, visualize various runtime
interactions of code. An alternative approach was taken by
Kuhn et al. [13] by structuring visual representations of the
codebase by the frequently used words (or concepts) expressed
within the source code. These common concepts may have
been expressed in structurally disparate code modules.

The execution visualizations (e.g., Jerding [10], De
Pauw [15]) are limited by their ability to represent only a
single execution at a time, which hinders their ability to reveal
commonly cooperating code subsets that perform various
tasks and thus reveal runtime features that are in common
across multiple executions. Moreover, the concept-mapping
visualizations (e.g., Kuhn [13]) are limited in their ability to
reveal which textually-similar modules cooperate (or do not)
during runtime to perform tasks.

In this work, we take a different approach. Much like the
concept mapping approach of Kuhn et al. [13], we represent
an overview of the source code. However, instead of the
textual similarity of the modules informing the placement of
the code representations, we use the runtime cooperation of the
code in order to emphasize and reveal flows of execution that
perform tasks. Much like the execution visualizations (e.g.,
Jerding [10], De Pauw [15]), we visualize runtime execution.
However, our visualization is principally informed by multiple
executions (as many or as few as the user chooses), and as
such, provides clusters of commonly cooperating code that
perform features and task that are observed across executions.

Our visualization, which we are calling CEREBRO, presents
clusters of code elements (in our implementations thus far,
these are source-code instructions). The placement and clus-
tering of the code is informed by execution traces to reveal
commonly interacting and cooperating instructions from those
executions. The visualization provides the ability to interact to



explore and reveal the structural composition of the clusters,
and it provides the ability to animate individual executions
atop the clustered views in order to discover the sequence of
execution behaviors and internal responses to external inputs.

To assess the visualization, we conducted three main eval-
uations. The first evaluation was a series of case studies of
software subjects to determine if we could identify mean-
ingful clusters that represented common functionality. We
found that the clusters were not only meaningful, but they
also demonstrated how object-oriented design often obfus-
cates feature-sets that cross-cut the structural design. The
second evaluation involved four independent judges of the
visualization to determine the quality and consistency of their
identified clusters. We found that the four judges identified
consistent clusters when presented with only the execution-
informed layout, and we observed that when the judges
were provided with the structural decomposition their results
had slightly greater divergence. The third evaluation involved
interacting with the external interface of a software system
whilst visualizing the internal code execution to determine if
features could be identified and located. We found that (1)
different subsections of the codebase were involved in each
external feature, (2) multiple clusters were often involved in
each external feature, and (3) the common and distinct clusters
involved in different external features provided insight into the
way in which features were implemented in the code.

The main contributions of this work are as follows:
1) A novel visualization of fine-grained code elements that

(a) reveals internal loci of functionality, (b) enables
discovery of runtime, internal behaviors across multi-
ple executions, (c) enables discovery of the structural
components that are involved and cooperate to perform
functionalities, and (d) enables exploration of individual
executions in the context of the clusters that are revealed.

2) An evaluation of the CEREBRO visualization and interface
that includes four diverse and real-world software sub-
jects that includes both independent judges and analyses
of the resulting clusterings.

3) An extention and maturation of our prior work [14],
including evaluations, new functionality, and a dissem-
ination of the implementation artifacts that form the
CEREBRO visualization.

II. MOTIVATION

Code Design and Decomposition. Programmers can use dif-
ferent methods for decomposing a functional task in code.
Wirth referred to the process as stepwise refinement and
proposed that “Refinement of the description of program and
data structures should proceed in parallel.” [18] In this early
and astute observation, Wirth points out that such refinement
occurs for both programmatic tasks and for data structures.

Later, Booch elucidated the benefits of decomposing code
primarily according to entities or objects, which he referred to
as object-oriented decomposition, and then secondarily decom-
posing programmatic tasks, which he referred to as algorithmic

Fig. 1: Example of a Functional Magnetic Resonance Imaging
(fMRI) scan of a human brain, which serves as inspiration for
our visualization. In the scans, the subject: (left) viewed a
face and (right) viewed a house. Red shows activation and
blue shows deactivation, which reveals different brain activity
for different tasks and stimuli.

decomposition. He states, “The algorithmic view highlights the
ordering of events, and the object-oriented view emphasizes
the agents that either cause action or are the subjects on which
these operations act,” [1, p. 20] and moreover, “We must start
decomposing a system either by algorithms or by objects and
then use the resulting structure as the framework for expressing
the other perspective.” [1, pp. 22–23]

Today, many software projects have adopted the object-
oriented method of problem decomposition — the classes
and entities form the dominant hierarchy that organizes the
code. By making this choice, functionality (i.e., “action”)
within the code is composed of multiple interacting objects
(i.e., “actors”), and can be more effectively understood with
a codebase recomposition that emphasizes the interactions
between “actors.”.

To enable such recomposition, a global overview of the
codebase is needed to reveal the composition of different
subsets of the codebase, and their cooperation across multiple
structures. We also posit that recomposing code according to
functional cooperation may reveal planned features as well as
reveal emergent internal behaviors. Such emergent behavior
may reveal behaviors that result from planned (but undocu-
mented designs) or may help identify inadvertent misbehavior
(e.g., bugs).

Inspiration: Human Brain Imaging. We took inspiration for
our approach to visualizing the internal functional structure of
the codebase from human brain imaging technology, namely
functional magnetic resonance imaging (fMRI). fMRI technol-
ogy detects and visualizes bloodflow within a living brain to
measure and detect brain activity. Cognitive neuroscientists
have found that different regions of the human brain are
activated by different external stimuli. Figure 1 shows an fMRI
scan for a brain of a human subject who was perceiving a
photograph of a person’s face (left) and for the same subject



who was perceiving a photograph of a house (right) [9].1
Following this inspiration, the elements that compose pro-

gram code should be placed in spatial locations that reduces
the distance between interacting elements. Our implementation
of CEREBRO uses source-code instructions2 as the granularity
of the program-code element. Following our analogy, an
instruction is analogous to a neuron; a cluster of instructions
is analogous to a lobe of the brain; the runtime connections
between the instructions is analogous to synapses; program
input is analogous to perceptual stimulus; and CEREBRO is
analogous to an fMRI scanner.
Envisioned Usage Scenarios. We envisage multiple potential
uses of the CEREBRO visualization. For example, newcomers
to a software project may use such visualizations to understand
the system’s structure and behavior (i.e., “onboarding”). An-
other example is to support feature localization by providing
the external stimulus to evoke a software feature and observing
the internal behaviors that correlate. We also envisage its use in
diagnostics to support maintenance for both preventative main-
tenance and corrective debugging. We can imagine software ar-
chitects using CEREBRO to perform a functional architectural
recovery, or to support detection of unintentional violations of
the prescribed architecture (perhaps due to software erosion).
Finally, much like how fMRI technology has influenced and
informed cognition and neuroscience researchers, we envision
that using a visualization such as CEREBRO may inform areas
of software research and future visualizations.

III. CEREBRO VISUALIZATION

The “brain” metaphor is a reflection of the data or entities
that are presented in this visualization. As an analogy to
the idea of the human brain — a set of complex parts
working together to respond to real-world stimulus — this
visualization represents software systems as individual parts
that work in concert to produce outputs for specific external
inputs. To elucidate, we address two central questions about
the visualization in this section: (a) what data or elements does
the visualization present?; and (b) how does the visualization
present the data?

CEREBRO presents source code and dynamically observed
white-box behavior. Specifically, we represent an entire soft-
ware system as a composition of individual, constituent
source-code instructions that are executed during the work-
ing of the system. To reveal how the executing instructions
work together, possibly from different parts of the system’s
structural organization, the visualization also presents the
dynamically observed control flows among the instructions and
the structural location of the source-code instructions. Figure 2
depicts the CEREBRO visualization, with each of its constituent
components, which we will now describe.
Data Source — Software Executions. We monitor software
executions, and treat them as our data source, to identify

1The image in Figure 1 is public domain and used under the Creative
Commons Public Domain declaration.

2In this work, a “source-code instruction” refers to an actual source-code
line in a software codebase, unless mentioned otherwise.

Fig. 2: CEREBRO visualization of the NANOXML program.
Nodes represent source-code instructions; edges represent
execution-trace control-flow; clusters of nodes represent com-
monly cooperating instructions; and node color represents the
object-oriented class in which the instruction belongs.

the executed set of source-code instructions and the flow of
the individual executions from one instruction to the next.
We represent executed source-code instructions as nodes in
a system-wide, dynamic control-flow graph. The nodes in
the graph are rendered with a force-directed layout, based
on the frequencies of execution flows, between source-code
instructions, during any number of executions or runs, of
the software system in question. The actual visualization is
composed of the following elements.

Nodes — Source-code Instructions. The nodes of the graph
are visualized as dots, each representing a source-code instruc-
tion that was executed, in at least one run of the program. Each
node is annotated with its respective source-code instruction’s
line-number and the names of the instruction’s owner-class and
-method. The annotations for a node becomes visible when a
mouse pointer is hovered over it.

Additionally, nodes are colored by the source-code class to
which their corresponding instructions belong. A large number
of colors are often required in the presence of a large number
of classes in a software system. Such a situation makes it
difficult to identify different shades of the same color that are
assigned to different classes; thus making it difficult to visually
distinguish between classes. To overcome this problem, nodes
that represent source-code instructions from the same package
hierarchy are colored with different shades of a common
color. This scheme of coloring ensures that classes from the
same package hierarchy are assigned similar colors. Thus,
allowing the identification of the common structural hierarchy
of source-code, if not the exact class.



As such, annotations and colors for nodes, which reveal
the structural organization of the source-code, enable the
identification of dynamic behavioral features as cohesive or
cross-cutting through the spatial layout of the nodes, which is
dynamically informed.
Force-Directed Layout — Cooperating Instructions. The
positions of the nodes in the visualization that represent
executed source-code instructions, are informed by a force
directed layout. The force-directed layout is composed of
repulsive and binding forces between nodes. These forces
influence the final positions of all nodes in the graph after
the layout algorithm is allowed to iterate and stabilize. A
constant repulsive force among nodes causes all nodes to
repeal each other. Simultaneously, a dynamically observed
flow of execution from one source-code instruction to another,
establishes a binding force between the corresponding nodes
in the layout. Further, the binding force between the two
nodes is positively weighted by increasing frequencies of such
execution flows between source-code instructions — these
frequencies are gathered both within an execution (e.g., a block
of code executed within a loop, or a method called multiple
times) and across executions (e.g., multiple runs that each
invoke the same execution path). Such a dynamically informed
layout, forces nodes to be closer when the representing source-
code instructions exhibit higher frequencies of execution flow
between them — indicative of greater runtime cooperation
between such instructions. We refer to such a layout of nodes,
for a single system, as the “brain” of the software system.
Edges — Execution Flows. An edge between two nodes
represents dynamically observed flow(s) of execution between
the two source-code instructions represented by the two nodes.
The edges in the visualization are optionally rendered, but
regardless of whether they are drawn, they inform the layout
of the nodes to place cooperating nodes near each other. When
rendered, the thickness of edges is directly proportional to
the frequency of traversals of the represented execution flow,
across all executions. As such, edge thickness is an indicator
of the weights of the individual binding forces that inform the
final layout of the visualized nodes.
Animation — Execution Enactment. In addition to the
inanimate elements of the visualization, i.e., nodes, layout
and edges, CEREBRO also facilitates the animation of soft-
ware executions, themselves. An execution is animated in
the visualization by highlighting the nodes for instructions in
execution order. The highlight is accomplished with a white,
larger-diameter dot for the currently executing instruction(s).
Animating multiple concurrent threads is also supported to
enable observation of how each thread’s execution interacts.
Finally, the animation can enact either a pre-recorded execu-
tion trace or a live execution that is occurring simultaneous
to, and alongside, the visualization.

IV. APPROACH

Given our discussion of how CEREBRO presents the interac-
tion between executed source-code instructions, it is important

Fig. 3: Screenshot of the CEREBRO visualization tool running
in a web browser.

to note the non-trivial mechanics to collect, recompose, and
finally present such data. In this section, we will provide a
brief overview on the principal parts of our approach, namely
— (a) collecting instruction execution traces for multiple
system executions; (b) recomposing execution traces to inform
the force-directed layout of executed source-code instructions
from their execution flows; and (c) visualizing the force-
directed source-code instructions and the executions — either
live or recorded — that flow through the instructions.

Collecting Execution Traces. As a first step to our approach
we need to monitor the executions of the software system
that we intend to visualize using CEREBRO. The monitoring
of program executions involves instrumenting the executable
binaries of the software system with probe instructions that
relay data about each executing source-code instruction during
the software system’s execution. Such instrumentation probes
capture and relay the necessary data about a specific source-
code instruction, just before its actual execution. We refer to
a stream of executing source-code-instruction data, as relayed
by the instrumentation probes, as an execution trace. Such
execution traces serve a dual purpose: to derive the execution
flows to inform the force-directed layout of the execution
instructions, and to visualize the execution itself.

Composing Force Directed Layouts from Execution Flows.
The first step towards computing the force-directed layout is
to identify the executed source-code instructions and the flows
of execution between them. We scan the recorded execution
traces to identify the set of source-code instructions that
are visualized as nodes. Simultaneously, we record the flow
of execution from one instruction to the next, along with
their frequencies, by observing the execution order of the
source-code instructions in the execution traces. We establish
an execution flow between two source-code instructions, if
the execution instance of one instruction was immediately
followed by the other, for each thread.

We treat the executed source-code instructions and the exe-



cution flows that connect them as nodes and directed-edges in
a directed graph. We use the frequency of the execution flows
as weights to the corresponding directed-edges in the graph.
We then use the graph as the input to a force-directed graph-
layout algorithm, which employs a constant repulsive force
among the nodes and binding forces between the connected
nodes, to render the final layout of the nodes in a two-
dimensional space. The resulting layout renders node clusters
and patterns, as shown in Figure 2, which are indicative of
how the groups of source-code instructions interacted with
each other via the flow of execution, often towards executing
a common feature of the underlying software system.

It is worth noting that we often analyze multiple execution
traces to inform the set of executed source-code instructions
and the flows between them – within and across individual
executions — to generate the force-directed layout. Despite
our ability to use multiple executions, our approach can also
work with a single execution trace, to generate the force-
directed layout of the executed instructions within the execu-
tion. However, it is worth noting that potentially a wider range
of node clusters and patterns, i.e., behaviors are revealed when
using more than a single execution.
Visualizing Source-Code Instructions and Executions. As a
final step in our approach, we visualize force-directed layout
of nodes and edges that represent the executed source-code
instructions and their execution flows, respectively. Aside from
using execution traces to compute the force-directed layout of
the nodes and edges, we also use execution traces to visualize
the executions themselves through the means of animating
the nodes in the order of execution of their corresponding
source-code instructions. Further, we support the visualization
of live executions by supplying the execution trace obtained
from a live execution, directly into the visualization, without
necessarily persisting the execution trace to disk. That said, a
prerequisite of our approach to visualize a live execution of a
software system, is the a priori generation of the visualization
layout of the software system, which can be informed by a set
of training executions.
Interactivity: Pan and Zoom, Execution Progress, Selection.
In addition, we present the visualization within the context
of an interactive user interface that enables the exploration
of the nodes and edges, and the source-code executions that
they represent. The vectorized form of the visualization allows
zooming and panning to focus on specific areas and movement
among them. The progress of an execution animation, from
a prerecorded trace, can be viewed and controlled with a
slider. Finally, regions of nodes within the visualization can
be selected with a free-hand lasso, which produces a summary
of the selected instructions in an accompanying pane of the
visualization.
Implementation. We implemented our approach, i.e., the
execution-tracing, computation of force-directed layout, and
the interactive visualization, as three different components.

Source-Code Execution Tracer. We implemented a source-
code instruction-level execution tracer that we call BLINKY.

BLINKY is a Java bytecode instrumentation framework that
is accompanied with an online profiler for dynamic collection
and relay of execution traces to other systems.3 BLINKY is
primarily based on the ASM bytecode re-engineering frame-
work [3]. We analyze the execution traces from BLINKY to
identify the executed source-code instructions and the execu-
tion flows between them to generate a force-directed layout.

Force-Directed Layout. We compute the force-directed lay-
out of nodes and edges in our visualization with an implemen-
tation of the Frutcherman-Reingold force layout algorithm [8],
as implemented in the GraphStream dynamic graph manipu-
lation and processing framework [7].

Interactive Visualization. We implemented the interactive
visualization for rendering the force-directed layout of ex-
ecuted source-code instructions with a web-based HTML5
application that relies on SVG for rendering the visualization
in a vectorized format. Figure 3 shows a screenshot of the
CEREBRO interactive visualization, running in a web browser.
Our implementation of the interactive visualization makes sub-
stantial use of D3.JS — a data-driven, declarative Javascript
library to create and manipulate interactive, web-based graph-
ics [2]. Implementing the entire visualization with web-based
standards and technology allows our implementation of the
visualization to be portable and inter-operable across different
platforms.4

V. EVALUATION

We employed our implementation of CEREBRO to address
three main research questions.

RQ1: Does the visualization assist in revealing common
software functionality across the structural organization
of source-code instructions?
RQ2: Does the visualization aid in consistently identify-
ing clusters of source-code instructions?
RQ3: Does the visualization enable localization of exter-
nal software features during live monitoring of execution?

We ask RQ1 in an attempt to understand the extent of
overlap, between the algorithmic decomposition of software
systems, which is largely influenced by the “actions” of the
software system, as against the structural organization of
source-code instructions that is often focused on the “actors”,
like in object-oriented code design. RQ2 is designed to study
the quality of code clusters that are revealed by the CEREBRO.
We are specifically trying to understand the consistency with
which four independent judges identify similar sets of clusters.
Finally, we ask RQ3 to study if CEREBRO helps in identifying,
when and where different software features are enacted during
the execution of a software system.

3BLINKY is available as an open-source project at https://github.com/
spideruci/blinky

4The open source implementation of the interactive visualization along with
its live demo is accessible at http://spideruci.github.io/cerebro.

https://github.com/spideruci/blinky
https://github.com/spideruci/blinky
http://spideruci.github.io/cerebro


Experimental Subjects. In order to carry out our investigation
we used our implementation of CEREBRO to visualize the soft-
ware executions of four real-world subject programs that pro-
vide non-trivial functionalities to their users. The software pro-
grams of our evaluation are — NANOXML (>2,600SLOCs),
JPACMAN (>3,000SLOCs), JAVAC (>70,000SLOCs), and
JEDIT (>100,000SLOC).

Qualitative Case Study.
In order to answer RQ1, we carried out a series of case-

studies, where we created the CEREBRO visualizations for
multiple executions of NANOXML, JPACMAN, and JAVAC,
and tried to identify the major functionalities exhibited by
executions of those systems. We identified software function-
ality in each system by investigating how various source-
code instructions were clustered together in the layout, thus
indicating cooperation between the instructions of a cluster
towards common features or “actions”. We labeled each cluster
that we recognized with a natural-language phrase that best
described to us, the common functionality or “actions” that
they perform. We gained an understanding of the common
functionality of each cluster, and thus their natural-language
label, by manually investigating the range of classes and meth-
ods that owned a cluster’s composite source-code instructions.
The natural language descriptors within the names of such
classes and methods helped us better understand the purpose of
such instruction clusters. In addition, we explored the systems’
executions by replaying recorded execution traces to identify
the order in which instructions clusters i.e., software function-
alities were enacted — thus revealing potential interactions
between functionalities and in effect pointing to higher-level
features of the software systems under study. The findings of
our exercise in identifying various high-level features of the
three software systems are depicted in Figure 4.

Our goal was to study the consensus or divergence between
the functionality exhibited by the systems and the cooperation
of source-code instructions towards those functionalities from
across various parts of the structural hierarchy of those sys-
tems. The structural hierarchy of the source-code instructions
is conveyed by the color of the nodes in the visualization
that indicate the range of object-oriented classes that the
constituent instructions of an annotated cluster belong to. We
recognize a consensus between the action-oriented features
and the object-oriented classes when an annotated cluster is
dominated by the nodes, i.e., source-code instructions, from
a single class — recognized by a dominant shade of col-
ors. Similarly, we identify a divergence between the features
and the classes, when an annotated cluster is constituted
by source-code instructions from multiple different object-
oriented classes — recognized by a mixture of different colors.

Instances of Consensus. As shown in the figures, the anno-
tated CEREBRO visualizations of the different systems reveal
cases of both consensus and divergence between the action-
oriented features and the object-oriented structure. Consider
the instances of the “start reading input data” cluster in
Figure 4a, for NANOXML that is dominated by green nodes —

those nodes are representative of the class StdXMLReader,
which reveals a class whose purpose is action-oriented rather
than entity-oriented.

JPACMAN also exhibits cases of consensus in Figure 4b.
Consider the “loading sprite image” cluster, dominated by red
colored instructions of the ImageLoader class and whose
modularization is informed by the action that it performs.

There also appears to be substantial agreement in the case of
JAVAC, shown in in Figure 4c. Consider the annotated clusters,
“generating code” and “writing classfiles” that are colored
in purple and blue respectively. Those clusters depict the
code generation phase of the JAVAC compiler, and represent
instructions from the classes Code, Gen and ClassWriter.

Instances of Divergence. In contrast, NANOXML also ex-
hibits a large cluster annotated as “parsing and reading input
data”, with nodes of a number of colors. These instructions
span multiple classes that are responsible for reading while
building the data structures in memory.

Such a trend is observed to a greater extent in the CEREBRO
visualization of JPACMAN. In Figure 4b, we particularly
identify two clusters — “creating a new game” and “moving
pacman and ghosts” — that display a high variety of color
compositions. The cluster “creating a new game” is the ini-
tialization code of the system that initializes object instances
from the entire range of different classes in the system, and
is thus expected to cross-cut the structural hierarchy of the
system. Similarly, “moving pacman and ghosts” represents
the main game-loop of JPACMAN and is thus, a composite of
multiple instructions from the various model and view classes
of JPACMAN.

The most notable case of divergence in JAVAC emerges
in the “compiling parse tree” cluster that exhibits a mix-
ture of different colors. This cluster represents the main
compilation phase within JAVAC’s execution, and composes
with instructions from within the parser, code generation,
and various utility classes, aside from the classes in the
com.sun.tools.javac.comp package that are respon-
sible for the various stages of compilation.

Visual Clustering Study.
In order to answer RQ2, we asked four independent judges

to identify clusters for different CEREBRO visualizations
for the three software systems: NANOXML, JPACMAN, and
JAVAC. The independent judges first assessed the composition
of visual clusters based on the colorless structure of the graphs,
and then reassessed the composition of the visual clusters
when color was added. As such, we recognize and note the
potential bias that this order of events has: judges may be
influenced by the visual structure in the colored version. Thus,
the results should be interpreted as such. The scope of this
study is limited to how the visual elements (force-layout and
color) impact the human-perception of node-clustering.

We initially provided all judges with a colorless rendition of
CEREBRO, where all nodes were colored in white. This forced
the judges to identify clusters based on just the layout of the
nodes with the CEREBRO visualization for each system. As
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Fig. 4: Software subjects with clusters labeled with the functionalities that they implement.

such, they were not influenced by the structural organization of
code. For this study, we call this treatment the white-treatment.

We then asked our independent judges to repeat the same
task for identifying clusters in the layout of nodes, with the
aid of colored nodes — colors representing the location of the
code in the structural organization of the systems. We refer to
this treatment as the color-treatment.

We recorded the contents of the individual clusters as
identified by the four judges, for all three software programs
and with both treatments — white and color. We next visually
compared the consistency with which the judges identified
similar node clusters. For each treatment and system, we
assigned a judge-identified-cluster with a specific color, and
colored all nodes within that cluster with that color — this
enabled a side-by-side visual comparison of the constituency
of each of the manual clusterings. Given the space limitations
we present representative samples of the resulting visual
comparisons5 of the judge-identified-clusters in Figures 5–6.

Figure 5 samples the visual comparisons of the clusters
identified by the four judges for the white-treatment. Each
row in Figure 5 shows the visual comparison of the clusters
by the judges for a single subject, starting with NANOXML.
For instance, Figure 5(b) shows the visual comparison of
the clusters by the second and third judges for JPACMAN,
with left-hand side showing the second judge’s clusters and
the right-hand side showing the clusters identified by the
third judge. Similarly, in Figure 6(a)–(c) we depict a sample
of the visual comparison of the three systems (NANOXML,
JPACMAN, and JAVAC) with the color-treatment. The colors
in both figures simply demarcate nodes from different cluster
as identified by the four judges; the colors do not carry any
other special meaning for these images. A visual inspection of

5The entire set of visual comparisons is made available at http://spideruci.
github.io/cerebro/data

the comparisons, depicted in-part in Figures 5 and 6, shows
a perceptible degree of similarity in the clusters identified by
the judges, across the two treatments. Moreover, in most cases
of disagreement, a large cluster identified by one judge would
be indicated by two or more distinct subset clusters by another
judge (the lower part of JPACMAN in Figure 5(b)).

That said, we observe a slightly greater consistency in the
clusters identified by the judges in the white-treatment, as
against that in the color-treatment. This is best observed in the
case of JPACMAN (Figure 6(c)), where the clusters identified
by the judges seem to diverge more than the others. It is
interesting to note such an effect with the color-treatment,
despite the obvious learning effect towards the force-directed
layout and against color. However, the reader should note,
that the clustering identified by the judges with the color-
treatment resemble closer to the clusters that we identified in
Figures 4a, 4b and 4c, from our initial case studies, where we
were informed by the actual execution animations, in addition
to the layout and color of each nodes.

In summary, we found that for our three subjects and four
judges, there was a general consistency of cluster identifica-
tion and composition. And although introducing structurally
informed colors for the nodes caused a small degree of
disagreement, those disagreements actually appear to be in
harmony with the clusters that we identified, informed in
addition by the execution-replays.

External Stimuli to Internal Response Causal Study. We
answer RQ3 by studying the animation of nodes for the soft-
ware system JEDIT by interacting with the external interface
of JEDIT and visualizing its internal response in real-time.
For the purpose of this study we created a simple scenario:
open a new file by using JEDIT’s file-browser, type changes
to the file, perform a textual find-and-replace to fix an error
in the text, before terminating JEDIT. We wanted to identify

http://spideruci.github.io/cerebro/data
http://spideruci.github.io/cerebro/data


(a) Clusters identified by Judges 1 and 2 for NANOXML

(b) Clusters identified by Judges 2 and 3 for JPACMAN

(c) Clusters identified by Judges 3 and 4 for JAVAC

Fig. 5: Samples of visual comparison of clusterings identified
by four independent judges with white-treatment.

the instructions that were executed for each task separately, so
as to locate possible clusters of instructions that support each
individual task — thus enabling us to identify the location of
the specific features associated with each task.

The resulting renditions of the partially colored visualiza-
tions, as informed by the four stages of our scenario are
presented in Figure 7. Different parts of CEREBRO for JEDIT
are highlighted for each individual task. That said, notice that
the clustering for “type text” and “perform find-and-replace”
are more similar than the other two clusterings. Upon further
investigation, we found that the two green clusters for “type
text” and “perform find-and-replace” (shown in Figures 7(c,d))
represent classes that work to provide functionality within text
area of JEDIT. Moreover, given that the “find-and-replace”
functionality in JEDIT renders results in the text editor itself,

(a) Clusters identified by Judges 1 and 2 for NANOXML

(b) Clusters identified by Judges 2 and 3 for JPACMAN

(c) Clusters identified by Judges 3 and 4 for JAVAC

Fig. 6: Samples of visual comparison of clusterings identified
by four independent judges with color-treatment.

the similarity between the two clusterings in Figures 7(c,d)
may be expected.

VI. RELATED WORKS

Execution Trace Visualization. Various researchers have pro-
posed solutions for visualizing program execution traces. De
Pauw et al. [15] created the JINSIGHT tool that visualizes the
relations among runtime entities of a program based on execu-
tion traces. Cornelissen et al. [4] created the EXTRAVIS tool
to visually encode dynamic method-call relationships among
structural components of programs and navigate those relations
using dynamic call-trace views. Reiss [16] proposes the JIVE
visualization to illustrate dynamic properties about the mem-
ory and threads of a program in execution. Both JINSIGHT and
JIVE visualize a program during its execution. Further, both



(a) During startup. (b) While browsing the file-system to open a new file.

(c) While typing text in an open file. (d) While doing a textual find-and-replace.

Fig. 7: CEREBRO for JEDIT at different stages during its live execution.



EXTRAVIS and JIVE map a program’s runtime information to
the corresponding structural source code components. Karran
et al. [11], recently proposed SYNCTRACE, a technique to
capture the runtime interplay of concurrent threads in a pro-
gram using program execution traces. Much like CEREBRO,
these tools visualize a program during its execution and map
runtime information to source-code components. In contrast,
CEREBRO targets the discovery of behavioral features, across
multiple executions, which may crosscut the program structure
to reveal how disparate structural components interact in
a single aggregate, clustered view. The individual program
execution replays are overlaid on the clustered view to reveal
dynamic patterns of a single execution.
Visualizing Source Code Dependencies. Deng et al. [5]
encode static dependencies between program instructions with
the CONSTELLATION visualization to highlight cross-cutting
aspects in a program. Kuhn et al. [13] cartographically visu-
alize software code clusters based on the “topics” contained
therein. Dietrich et al. [6] created BARRIO to visually cluster
entities in Java programs to model their modular structure
using the dependence relations therein. Krinke [12] visualizes
program slices within a framework of static dependencies in
a program. Similar to such works, CEREBRO clusters source
code instructions; however, CEREBRO clusters instructions that
form dynamic, functional aspects of the software program,
using only dynamically collected information.

VII. CONCLUSIONS

In this paper we present a novel visualization — CEREBRO
— that renders executions of a software program overlaid
on a dynamically informed, global view of the program’s
source code. The visualization reveals: (1) dynamic, behavioral
features that compose executions; and (2) the composition of
the source code that cooperates to facilitate those features,
which often includes multiple files and modules. We empir-
ically found that the clusters identified by the visualization
were meaningful and directed attention toward functionality
that cross-cut the object-oriented, structural decomposition of
the software subjects. We also found that the four independent
judges displayed a greater degree of consistency in identifying
emergent, crosscutting functional modules, especially when
not distracted by the object-oriented decomposition. Finally,
we found that visualizing live software execution enabled the
identification and localization of code clusters that interact to
implement external software features.

In the future, we plan to explore the use of other graph-
layout algorithms to identify clusters of code. Additionally, we
are working toward automatic and algorithmic identification
of the boundaries of code clusters that represent internal
constituent behaviors. Also, we plan to develop and evaluate
use of CEREBRO for various of the envisaged usage scenarios
described in Section II.
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