Visualizing Constituent Behaviors within Executions

Vijay Krishna Palepu and James A. Jones
Department of Informatics, University of California, Irvine, USA
{vpalepu, jajones} @uci.edu

Abstract—In this New Ideas and Emerging Results paper, we
present a novel visualization, THE BRAIN, that reveals clusters
of source code that co-execute to produce behavioral features
of the program throughout and within executions. We created a
clustered visualization of source-code that is informed by dynamic
control flow of multiple executions; each cluster represents
commonly interacting logic that composes software features. In
addition, we render individual executions atop the clustered
multiple-execution visualization as user-controlled animations to
reveal characteristics of specific executions—these animations
may provide exemplars for the clustered features and provide
chronology for those behavioral features, or they may reveal
anomalous behaviors that do not fit with the overall operational
profile of most executions. Both the clustered multiple-execution
view and the animated individual-execution view provide insights
for the constituent behaviors within executions that compose
behaviors of whole executions. Inspired by neural imaging of
human brains of people who were subjected to various external
stimuli, we designed and implemented THE BRAIN to reveal
program activity during execution. The result has revealed
the principal behaviors of execution, and those behaviors were
revealed to be (in some cases) cohesive, modular source-code
structures and (in other cases) cross-cutting, emergent behaviors
that involve multiple modules. In this paper, we describe THE
BRAIN and envisage the uses to which it can be put, and we
provide two example usage scenarios to demonstrate its utility.

I. INTRODUCTION

Visualizing runtime interactions in an execution of a soft-
ware system can assist software developer in tasks that need
program understanding. This importance of visualizing run-
time interactions is emphasized by Jerding et al. [6], in their
work on Execution Murals, where they show how global
overviews for a software execution provide “immediate insight
into different phases of the execution” and enable an execution,
specifically execution traces, to be “searched visually”.

Traditional GUI-based debuggers assist in understanding
executions; however, they localize the view of an execution,
restricting the developers’ attention to a single file, class
or method at a time. More recent research has built upon
the notion of Execution Murals to visualize varying runtime
interactions. Such works include that by De Pauw et al. [9],
Cornelissen et al. [1] and Triimper et al. [11]. However, such
works visualize a single execution at a time, encoding program
behavior that is potentially only relevant to that execution.

In contrast, Deng et al. [2] represented multiple-execution
behaviors by using a force-directed graph of source-
code-instruction nodes and control-dependence and data-
dependence edges. They then used dynamic statement-
coverage data to inform weights to edges to induce clustering
of instructions that were evoked in the same executions. The

Encoding Escaped
Characters

Accepting Streaming
Input

Reading Non-XML
Character Data

Initializing
Data Structures

Reading and Parsing
Input Data

Writing Output
Data to File

Fig. 1: THE BRAIN visualization of the NANOXML program.

resulting visualization, Constellation visualization, revealed
clusters of instructions that shared static-analysis dependencies
and were executed in similar sets of executions. However, it is
subject to inaccurate inference of dependence coverage from
the lower-fidelity statement coverage. Moreover, it can only
reveal overall clusters of code across all executions.

Our objective is to provide a global view of program
behavior due to, both, an individual execution and an aggregate
effect of multiple executions, to assist developers’ understand-
ing of programs and executions via insight and discovery. We
meet this objective with a visualization that we are calling
THE BRAIN, where we render frequently interacting source-
code instructions as clusters, and overlay individual executions
with user-controllable animations. The clustered visualization
takes inspiration from our earlier Constellation visualization
work, but instead uses statement traces and dynamic control-
flow data to identify definitive (i.e., not heuristically inferred)
code relationships and sequentially ordered interactions of
source code. In another divergence from our previous work,
the clustered view is informed by purely dynamic information
(i.e., no static dependence analysis is required) and as such
does not suffer from the over-approximations of such analyses.



As such, the resulting clusters are entirely informed by actual
dynamic behavioral and functional features within and across
executions. Much like our earlier work, we weight the edges
according to frequency of dynamic occurrence.

We provide insight into individual executions by animating
source-code executions, overlaid on the clustered view. The
animation enables comparison against the aggregate behavior
of all executions, which may reveal anomalies.

Figure 1 demonstrates the clustered view of THE BRAIN
on the NANOXML program. We have overlaid labels upon the
behavioral features that can be observed as distinct occurrences
with the single-execution animations.! Nodes represent source-
code instructions, which are placed nearby other instructions
with with they commonly execute; and edges are optionally
drawn with thickness denoting frequency of traversal. The
visualization is described, in detail, in the following section.

The key contributions of our work are as follows.

e THE BRAIN: a novel visualization that renders program
behavior due to an individual execution against the land-
scape of a more general program behavior due to multiple
executions.

o Two example usage scenarios, demonstrating how THE
BRAIN can assist software developers.

II. THE BRAIN VISUALIZATION

To provide a detailed overview of THE BRAIN, we adopt the
5-dimensional framework proposed by Maletic et al. [8] for
describing software visualizations. Their five dimensions are:
“Task,” “Audience,” “Target,” “Presentation” and “Medium.”
Each of these dimensions address the “why,” “who,” “what,”
“how,” and “where” questions, respectively. Finally, in this
section we describe our choice of the “brain” metaphor.

Task. Why is the visualization needed? As this paper presents
emerging work, all potential use cases for THE BRAIN are
yet to be identified. However, we have discovered its applica-
bility to diagnose anomalous execution behavior and provide
insights into execution patterns that exist within and across
executions of the code. In addition to these discovery activities,
we envision its use for many other tasks, such as reverse-
engineering or refactoring potentially disparate parts of the
code that are responsible for software features. THE BRAIN
presents a global view for program executions that typically
are large information spaces. As Jerding et al. [6] highlight,
global views provide users with “immediate insight into large
information spaces” and also serve as effective tools for
“visually searching” large information spaces that can guide
subsequent analyses. Finally, we think that THE BRAIN pro-
vides an inspiring alternate conception of executing software,
which may inspire software-visualization researchers.

Audience. Who will use the visualization? We envision the
visualization to be useful in the previously described ways
to (1) software programmers trying to understand code inter-
actions to implement new functionality (2) software architects

'Due to our inability to demonstrate animations, we encourage readers to
view a video of THE BRAIN at http://vimeo.com/spideruci

trying to understand code interactions for either re-architecting
or verifying architectural compliance, (3) software testers
and debuggers trying to understand and fix bugs, and (4)
software-visualization researchers seeking new paradigms for
representing program structure and execution.

Target. What is the data source to represent? THE BRAIN
represents source code and dynamically observed white-box
behavior. Specifically, we represent each source-code instruc-
tion, along with its modular location, and the dynamically
observed control flows among the instructions.

Presentation. How to represent it? We represent source-code
instructions as dot-sized nodes in a force-directed graph. The
visualization is composed of the following elements:

Nodes — Annotations, Color. The nodes of the graph are
visualized as dots, each representing a unique source code
instruction of the program being visualized. Each node
is annotated with the class name, method name and the
actual text of source-code instruction that it represents. The
annotation for a node becomes visible when a mouse pointer
is hovered over it. The color of each node is defined by the
class to which it belongs, which enables the identification
of cohesive or cross-cutting dynamic behavioral features.

Edges — Thickness, Length. Edges are optionally dis-
played, controlled with a toggle. When drawn an edge be-
tween two nodes represents a dynamically observed control-
flow relation between the two source-code instructions rep-
resented by the two nodes. The thickness of the edge is
directly proportional to the frequency of traversals of the rep-
resented flow, across all executions. The default length (and
strength) of each edge is inversely proportional (positively
for strength) to the frequency of traversals of the represented
control flow. However, the eventual length is subject to the
layout algorithm, which heuristically optimizes placement of
nodes and their edges.

Layout — Force Directed Graph. The force directed lay-
out is composed of a constant repulsive force among nodes
and binding forces imposed by the edges between nodes. The
binding edge force between two connected nodes is weighted
according to the frequency of execution of the represented
dynamic control flow. These forces influence the positions of
all nodes in the graph after the layout algorithm is allowed
to iterate and stabilize.

Animation — Execution Replay. An execution is animated
in the visualization by highlighting the instructions from
an execution trace in execution order. The highlight is
accomplished with a white, larger-diameter node.

Interactivity — Pan and Zoom, Progress, Selection.

The entire visualization is represented in vector form, thus
allowing zooming and panning to focus on specific areas and
movement among them. The progress of an execution can
be viewed and controlled with a slider. Finally, regions of
the graph can be lassoed, which produces a summary of the
represented selected instructions in an accompanying pane
of the visualization. In the future, we will provide brushing
to complementary visualizations, such as SeeSoft [5].


http://vimeo.com/spideruci

_Play Execution

Execution Progress:

a) Opened the Brain Visualization Web Interface.

Execution Progress:

Line: 325,

Method: processDocType()V,

Class: net/n3/nanoxml/StdXMLParser,
Source Code Line: this.entityResolver,

d) Execution Replay: NanoXML is parsing the XML.

Select Execution to Run: execution0 -

e) Zooming-in for a closer view.

Execution Progress:

executionC

executionl
execution2

Line: 350,

Method: read()c,

Class: net/n3/nanoxml/StdXMLReader,
Source Code Line: int ch =
this.currentPbReader.read();

execution3

c) Execution Replay: NanoXML is reading the input.

Execution Progress:

Line: 163,

Method: writeEncoded(Ljava/lang/String;)V|
Class: net/n3/nanoxml/XMLWriter,

Source Code Line: char c¢ = str.charAt(i);

f) Execution Replay: NanoXML is writing the output.

Fig. 2: THE BRAIN — Animated replay of an Execution for NANOXML

Medium. Where to represent the visualization? The current
implementation of THE BRAIN runs in any modern web
browser that supports the HTMLS and SVG standards.

The “Brain” Metaphor. The choice of the “brain” metaphor
is inspired by visualizations of brain activity of people who
are subject to external stimuli. Our use of the metaphor is
rooted in the entity being presented in this visualization, i.e.,
the working behavior of a program or computational unit that
accepts input; has modules or sub-units with specific functions
and work for specific inputs; and whose behavior is not well
understood by its users. Similarly, the human brain can be
considered a computational unit that responds to stimulus (i.e.,
input); contains sub-units with specific functions that work
for specific stimuli. For example, the frontal brain lobe is
particularly active during problem solving; and in contrast,
visual recognition particularly activates the Occipital lobe.

ITII. EXAMPLE USAGE SCENARIOS

We present two example usage scenarios for THE BRAIN
involving, program comprehension and anomaly detection.
The scenarios render NANOXML, which is a Java XML parser
with >7,000 LOC, in a prototype implementation of THE
BRAIN. The implementation and its use are illustrated in Fig-
ure 2. NANOXML'’s source code and test cases were obtained
from the Subject-artifact Infrastructure Repository [4].

Scenario: Program Execution Comprehension. This scenario
showcases how THE BRAIN can help in understanding the
internal behavior of a program execution. Specifically, we
illustrate the identification of execution patterns for different
components, during a sample execution of NANOXML.

Early Execution. After rendering the program, Figure 2(a),
we replay a sample execution as shown in Figure 2(b):

select a sample execution from the drop-down list labeled
Select Execution to Run and click the Play Execution button.
As a result, a stream of instruction nodes light up in the
visualization, as shown in the left-hand side of Figure 2(c),
in the beginning of the execution replay. The execution’s
progress is continuously indicated by a slider, moving from left
to right. Simultaneously, the most recently replayed source-
code instruction is displayed. The example in Figure 2(c)
depicts one-time, early execution of instructions from the
StdXMLReader class, which initializes and sets up the
reader functionality.

Middle Execution. The next phase of execution constitutes
the bulk of the processing, as evidenced by the thick edges
in the center of the visualization. Figures 2(d) and 2(e)
depict the repeated execution of instructions from the classes
StdXMLParser, XMLUtil, and several others. These in-
structions are visibly localized to a large cluster of nodes in
the center of the visualization for the majority of the execution
replay. This illustrates the dominant operation of the reading
and parsing behavioral features.

Late Execution. The final phase of the execution performs
writing of the data to output. Figure 2(f) depicts the execution
of instructions from the XMLWriter class, which performs
the outputting phase of execution.

Discussion. From the clustered visualization, the dominant
behavior is clearly visible, and the auxiliary flows and clusters
are set apart. Upon animating the execution, the sequence of
the behavior and the way in which the features interact be-
comes apparent. Moreover, the heavy interaction of the classes
that constitute the reading and parsing functionality reveals
the magnitude of the code and execution that is devoted to



this one phase of functionality. Although NANOXML may be
considered to have a mostly comprehensible execution pattern,
that execution pattern was not obvious to us before viewing
the visualization, particularly the dominance of the reading and
parsing functionality for all executions. Moreover, we imagine
the use of such visualizations for programs with much larger
feature sets which can reveal opportunities for development
tasks such as code refactoring, performance optimizations, and
design recovery.

Scenario: Execution Anomaly Detection. This scenario
showcases how THE BRAIN can help in detecting anomalous
program behavior.

Malformed Input Anomaly. We found an anomaly in our testing
with an execution replay that took remarkably less time to
complete than the other execution replays. An incoherent and
distinct animation of the instruction nodes, for this execution
replay, further indicated an anomaly. A subsequent inspection
of the corresponding input XML file for this execution replay
revealed a mismatch in the starting and ending tags for an
XML element. Fixing this the input XML file and rendering
the resulting trace produced a regular execution replay.

Missing Behavior Anomaly. We found an anomaly when a
cluster was not executed by a particular execution trace. Upon
investigation, the unexecuted cluster was revealed to process
string data in leaf XML tags, which was confirmed upon
inspection of the input file.

Discussion. Using our own visualization in its testing revealed
not only the common pattern of execution, but also some
outliers. In the first execution anomaly, we discovered a flawed
input file (which may or may not have been intentional by
the tester). In the second execution anomaly, we discovered a
correct input file but also became aware of the difference in
the functionality that it tested and better understood the role
of the unexecuted cluster.

IV. RELATED WORKS

Execution Trace Visualization. Several researchers have
proposed visualizations of program execution traces. As ex-
amples, De Pauw er al. [9] created JINSIGHT, Cornelissen
et al. [1] created EXTRAVIS, Reiss [10] created JIVE, and
Triimper et al. [11] recently created TRACEDIFF. Much like
THE BRAIN, these tools visualize a program during its execu-
tion and map runtime information to source-code components.
However, in contrast, THE BRAIN targets the discovery of
behavioral features, across multiple executions, which may
crosscut the program structure to reveal how disparate struc-
tural components interact in a single aggregate, clustered view.
The individual program execution replays are overlaid on the
clustered view to reveal dynamic patterns of a single execution.

Visual Clustering of Source Code. Several researchers have
proposed visualizations to cluster source code. As examples,
Deng et al. [2] created Constellation visualization to show co-
executing static dependencies, Kuhn et al. [7] cluster based
on textual analyses, and Dietrich er al. [3] created BARRIO
to cluster based on static modular structure. Much like THE

BRAIN, these tools cluster source-code elements. However, in
contrast, THE BRAIN clusters source-code instructions for the
purpose of revealing behavioral features within executions and
provides facilities to visualize individual dynamic executions
of the program.

V. CONCLUSIONS

In this paper we present a novel visualization — THE
BRAIN — that renders executions of a software program over-
laid on a dynamically informed, global view of the program’s
source code. The visualization reveals: (1) dynamic, behavioral
features that compose executions; (2) the composition of
the source code that cooperates to facilitate those features,
which often includes multiple files and modules; and (3)
anomalous behaviors of individual executions. We illustrate,
through usage scenarios, how the visualization may assist
developers in their development tasks. In the future we plan
to evaluate the scalability of both the visual elements and the
underlying mechanics of trace collection for larger systems.
Such evaluations would focus on understanding the usefulness
of such a visualization to developers; thus guiding future
evaluations by user studies. The resulting qualitative results
for such visualizations make scientific validation challenging.
We hope to discuss evaluation strategies, using empirical
studies and theoretical frameworks, to assess the usefulness
to developers.

VI. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under award CCF-1116943.

REFERENCES

[1] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk,
and A. van Deursen. Understanding execution traces using massive
sequence and circular bundle views. In International Conference on
Program Comprehension, pages 49-58, 2007.

[2] F. Deng, N. DiGiuseppe, and J. A. Jones. Constellation visualization:
Augmenting program dependence with dynamic information. In In-
ternational Workshop on Visualizing Software for Understanding and
Analysis, pages 1-8, 2011.

[3] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow.
Cluster analysis of Java dependency graphs. In Symposium on Software
Visualization, pages 91-94, 2008.

[4] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact.
Empirical Softw. Engg., 2005.

[5]1 S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. Seesoft—a tool
for visualizing line oriented software statistics. IEEE Transactions on
Software Engineering, 18(11), 1992.

[6] D.F. Jerding, J. T. Stasko, and T. Ball. Visualizing interactions in pro-
gram executions. In International Conference on Software engineering,
pages 360-370, 1997.

[71 A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz. Software cartography:
thematic software visualization with consistent layout. Journal of Soft-
ware Maintenance and Evolution: Research and Practice, 22(3):191—
210, 2010.

[8] J. I. Maletic, A. Marcus, and M. L. Collard. A task oriented view
of software visualization. In International Workshop on Visualizing
Software for Understanding and Analysis, pages 32—40, 2002.

[91 W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides, and

J. Yang. Visualizing the execution of Java programs. In Revised Lectures

on Software Visualization, International Seminar, pages 151-162, 2002.

S. P. Reiss. Visualizing Java in action. In Symposium on Software

Visualization, pages 57-65, 2003.

J. Triimper, J. Dollner, and A. Telea. Multiscale visual comparison of

execution traces. In International Conference on Program Comprehen-

sion, 2013.

[10]

(1]



