
Trendy Bugs

Topic Trends in the Android Bug Reports

Lee Martie, Vijay Krishna Palepu, Hitesh Sajnani, Cristina Lopes

Department of Informatics

University of California, Irvine

Irvine, CA 92697 USA

{lmartie, vpalepu, hsajnani, lopes}@ics.uci.edu

Abstract—Studying vast volumes of bug and issue

discussions can give an understanding of what the

community has been most concerned about, however the

magnitude of documents can overload the analyst. We

present an approach to analyze the development of the

Android open source project by observing trends in the bug

discussions in the Android open source project public issue

tracker. This informs us of the features or parts of the

project that are more problematic at any given point of time.

In turn, this can be used to aid resource allocation (such as

time and man power) to parts or features. We support these

ideas by presenting the results of issue topic distributions

over time using statistical analysis of the bug descriptions

and comments for the Android open source project.

Furthermore, we show relationships between those time

distributions and major development releases of the Android

OS.

Keywords-bug logs; Android; topics; statistical trend

analysis

I. INTRODUCTION

For the 2012 MSR Challenge, inspired by the related

work in [2], we present the trends in the discussions that

took place among Android developers in the Android

open source project issue tracker. Studying these vast

volumes of discussions from these knowledgeable people

can give an understanding of what the community has

been most concerned about. However, the vast volume of

discussion documents (greater than 80K) overloads the

analyst. We present discussion trends on these documents,

giving us a high level perspective on problematic features

of the project rather than lower level problematic parts of

the project. These trends provide actionable knowledge

for managing organizations when making scheduling and

resource allocation decisions.

Section II describes the document data used to generate

the topic trends. Section III reports on the method used to

convert 20,169 bug reports into high level topic trends

occurring in them. Section IV presents our results and we

conclude in Section V.

II. INPUT DATA

The Android bug XML logs [10], as provided by the

MSR 2012 Mining Challenge are extracted from [1]. A

sample Android bug log entry is as follows.
<bug>

<bugid>bug number</bugid>

<title>bug title</title>

<status>bug status e.g. new, closed, etc.</status>
<owner>developer who owns the bug</owner>

<type>type of bug e.g. Defect, enhancement etc.</type>

<priority>priority of the bug</priority>
<component>

component of the project the bug belongs to

</component>
<closedOn> when the bug was closed (“null”if not closed)

</closedOn>

<stars>how many people voted or starred the issue</stars>
<reportedBy>email id of person reporting the bug</reportedBy>

<openedDate>date the bug was files</openedDate>

<description>description of the bug</description>
<comment>

 <who>person who commented</who>

<when>time when commented</when>
<what>text of the comment</what>

</comment>

</bug>

III. TOOLS AND METHODOLOGY

To transform the 20,169 bug reports into topic trends

we built a parser to transform the bug tags into Java

objects with the Java DOM library. We then created our

documents from these bug objects. For a given entry in

the bug log, we treat the collective content from the bug

title and description as one document. Additionally, the

content of the what tag of each individual comment for a

given bug is treated as one document. Each of these

documents is annotated with their creation time-stamps,

which is obtained from the openendDate tag in the case of

a bug and the when tag in the case of a comment. This

results in the creation of 20,169 documents using bug

titles and descriptions, and 67,730 documents using

comments, thus generating a corpus of 87,899 documents.

The resulting corpus is a collection of time-stamped

remarks about the problems in the Android open source

project. We then removed default stop words used in the

MALLET library [5] from these documents.

Table 1: Bug-topics with Top 4 Descriptive Words in Descending Order of Probabilities – Bug-topics with greater than 40% statistical

variance in probabilities over time stamps are emboldened – Emboldened topics are labeled with descriptive names in curly brackets

0 emulator adb android system
1 droid motorola android problem

2 {Issue Assignments} –

 issue engineer assigned work

3 permission android permissions

 app

4 server ssl certificate client
5 android code api application

6 vpn connect mtpd server

7 contacts contact phone sync
8 good great google idea

9 nexus issue problem froyo

10 {Email} –

 email client youq device

11 database sqlite android content
12 dalvikvm ms bytes gc

13 hardware bluetooth support

 android
14 email mail gmail exchange

15 app apps market android

16 settings menu option select
17 user feature option make

18 music player mp video

19 {Calendar} –

 calendarparser ad key verify

20 data reset settings phone

21 {Forum Support} –

 google mobile forum android

22 {Fixed Issues} –

 fixed sdk release issue

23 screen button home back

24 code test log problem

25 {Code Review} –

 source android review https

26 iq em eve ed

27 {Issues} –

 id google android issues

28 problem issue solution fix

29 view screen touch mode
30 http android html developer

31 text keyboard type key

32 card sd sim memory
33 samsung galaxy problem

 android
34 number phone numbers call

35 {String} –

 java string public import

36 {Issue Tracker} –

 apps bug tracker google

37 java org apache harmony
38 android phone feature google

39 call phone calls incoming

40 bug issue report fixed
41 proxy address apn ipv

42 eq string uri html

43 memory mb size system
44 htc desire problem android

45 project file android xml

46 usb device driver phone

47 {Media Codecs} –

 return omxcodec cpp media

48 search list add find

49 {Runtime} – view android

 java androidruntime

50 bluetooth phone car music

51 {HTTP} –

 http thread google www

52 {Debugger} –

 debug info system lib

53 eclipse android sdk windows

54 phone alarm volume mode

55 test cts android tests

56 {Graphics Library} –

 gl public void int

57 {Issues} – issue merged

 duplicate resolved

58 thread state event wait
59 file files download directory

60 update problem issue version

61 gps location maps google
62 error unable open stack

63 time date zone timezone

64 {XML Schema} –

 android layout xml id

65 class method null string

66 {Kernal Code} –

 git kernel platform android

67 {Device} –

 android source report devices

68 mediaplayer audio media xx

69 calendar event events google

70 fix google issue phone

71 {Runtime} – java android

 androidruntime os

72 google issue comments people
73 font support characters android

74 wifi network connection

 connect

75 {Issues} –

 problem show issues order

76 {Forum Support} –

 google android forum bugs

77 {Eclipse} –

 java eclipse org internal

78 language support android
 keyboard

79 works work fine problem

80 es itq thatq thereq
81 intent action android true

82 {CPU} –

 timed identity cpu pegged

83 time data make lot

84 browser page web android
85 problem phone back issue

86 ere youq weq ell

87 message sms messages text
88 honeycomb transformer tablet

 asus

89 {Build} –

 build target lib mk

90 {Security} –

 ca ou cn certificate

91 activity dialog called call

92 phone battery time problem

93 build version android mobile
94 image gallery camera images

95 system err locale en

96 protocol canvas draw pppd
97 camera preview bitmap xb

98 voice phone bluetooth dial

99 google account gmail password

Figure 1: Topic Trends over Time

Once we created these documents, we fitted an LDA

[8] model on them using the Gibbs sampling

implementation in the MALLET library [5]. LDA is a

probabilistic model that associates a probability

distribution of topics to each document in a corpus. Each

distribution assigns a probability of a topic as describing a

document. Further, each topic in LDA is a probability

distribution over words in the corpus. This distribution

assigns a probability of a word as describing a topic. For

an explanation of Gibbs sampling, refer [9]. We ran 3000

sampling iterations and generated 100 topics.

Anecdotally, at 3000 iterations the same topics seemed

consistently produced; however there could be gains in

the quality of topics produced by increasing the number

of iterations. We chose to generate 100 topics since it

seemed to give us a fine grained level of topics that were

mostly interpretable. Choosing the number of topics is

often an art and can be adjusted for different results and

applications. The important result from running Gibbs

sampling is 87,899 topic distributions (one topic

distribution for each document). In each topic distribution

there are 100 probabilities (one probability for each

topic). So we now have a distribution of topics for each

document. We can use the probability of a topic in the

distribution for a document as a measure for how

prominent that topic is in that document.

Next, we replaced documents with their time-stamp to

get topic distributions over time. Then we reordered each

distribution in the chronological order to get topic

distributions from Nov 2007 to March 2011. Thus,

resulting in the 87,899 topic distributions, associated with

time-stamps, being ordered chronologically. Since, it is

possible that documents could have had the same time-

stamp we could have multiple topic distributions for the

same time-stamp. This means that a topic from each of

these distributions may have several probabilities

associated with one time-stamp. This issue is addressed

via curve fitting as explained later in this section.

We then focused our attention to topics which

showcased more than 40% statistical variance in their

probabilities, from each distribution, across all time-

stamps. We reasoned that such topics could indicate

buggy features which would seemingly be resolved to the

development community, thus reducing the discussions

related to those bugs, only to resurface again, which

would be indicated by a surge in the volume of discussion

around the topic. This resulted in the 25 bold bug topics

as shown in Table 1. Further, curly brackets in Table 1,

contain a descriptive name, created manually, for the

topics which they annotate.

Our motivation is to provide the analyst with a high

level picture of problematic features over time, so we use

curve fitting to give the analyst a shape that describes how

a topic trends over time. We do this by first making a plot

for each topic. Points are created by setting the x-value of

a point to a time-stamp and the y-value of that point to the

corresponding probability in the topic distribution. In this

plot, the y-axis represents the probabilities and the x-axis

represents chronologically ordered time-stamps. We then

fit a curve to these points to see how the topic trends over

time. Additionally, this curve gives each topic one y-value

(probability) for each x-value (time-stamp) and addresses

the issue of multiple probabilities for one time stamp, as

mentioned above.

We use the LOWESS curve fitting algorithm using R,

via the Java-R Interface [7], for curve fitting and thus

generate our topic trends for the bug data. We lay these

trend lines on top of each other for comparison.

Prior to curve fitting the plots of these 25 topics we

reduce noisy data by removing all points with

probabilities equal to or less than 0.1. We do this because

we are only concerned with the behavior of topics when

they are being talked about. The final result is shown in

Figure 1. Line styles help visually distinguish between the

curves. Further, we annotated this plot with vertical lines,

at points of release dates of major versions of the Android

OS, which is later used in the analysis.

IV. ANALYSIS AND RESULTS

A. Bug Topics

The first interesting output that we obtained was a set

of 100 bug topics, numbered 0 to 99 as listed in Table 1.

This listing shows for each topic, 4 words that are ordered

descendingly by their probability of describing the

respective topic. Such a listing does not indicate any

pattern or trend. Based on the words associated with the

bug topics, one can speculate about the topics of

discussion in relation with the bug reports. For instance

topic 68, 63 and 14 show that there were bugs which

resulted in a discussion: on the media player, dates and

time zones, and gmail respectively.

B. Time Distribution of Bug Topics

After a careful study of the 25 topics, which are

emboldened in Table 1, our attention turned to topics 49:

view android java androidruntime and 71: java android

androidruntime os. In one glance one can see the android

runtime error was a problematic feature of the Android

platform and as such it would be logical to schedule more

time and man power to its development. In Figure 1, we

noticed that the trend curve for topic 49 showed

significant fluctuations. A similar fluctuating trend was

also noticeable in the trend line of topic 82: timed identity

cpu pegged. Initially, we could not discern any direct

correlation between the two. However, upon a Google

search of the words in topic 82, in that exact order, we

were led to a Stackoverflow page [4] that raised a query

regarding a “CPU maybe pegged” bug. The query was

related to a graphics intensive application based on

OpenGL. This motivated us to search for other topics that

would be related to OpenGL or Graphics. This search led

us to discover topic 56: gl public void int, which exhibited

a relation to a graphics library or gl. It is interesting to

note that this topic too is one of the 25 topics that are

emboldened in Table 1. The trend curves for all four

topics have been plotted in the graph shown in Figure 1.

Interestingly, all these topics show a declining trend after

the release of Android 2.3 Gingerbread in December 2010

[3].

We know Android Gingerbread was shipped with a

new concurrent Garbage Collector, which was meant to

improve application speeds, specifically targeting graphic

intensive applications [6]. Thus, by using these trends we

can speculate that the new garbage collector may have

resolved issues with the Android runtime and graphics

applications that use heavy weight graphics libraries,

since discussion about it quitted down. One immediate

line of investigation then is to inquire the impact garbage

collectors have on runtimes. Fixing memory leaks is one

example. If the Android management knew the garbage

collector was meant to address runtime problems they

could see the payoff with the downward trend in the

runtime topic after the release of Gingerbread with the

new garbage collector. This goes to motivate the study of

trends in issue tracking systems as a way to monitor

problematic parts or features of projects.

C. Peaks and Trenches of Trend Curves of Bug Topics

Figure 2: Peaks and Trenches of Trend Curves of Bug Topics

This analysis looks at plotting the peaks and trenches

of trend lines, highest and lowest points respectively. We

were motivated towards this particular result due to the

findings of the previous analysis where we found shifts in

trends for topics right before a major release.

These points are plotted as shown in Figure 2. The x

and y axes are same as Figure 1. The open dots represent

the peaks and the solid dots represent the trenches.

Furthermore, we also marked the major release dates for

Android starting from version 1.0 to version 4.0. These

are represented as nine dotted vertical lines in the graph.

The vertical clustering of the peaks and trenches indicate

that peaks and trenches usually occur together at the same

time. This clustering in the data prompts interesting

questions like, is there a causal relation between what is

being talked about in the issue tracker and the

organization of the Android Team (e.g. scheduling)? As

can be seen in Figure 2, the clustering in some instances

actually occurs near the vertical lines representing major

release dates.

V. CONCLUSION

In this paper we presented an approach to examine the

topics of concern for the Android open source project. We

modeled discussions in the project’s public issue tracker.

We showed trends for bug-topics with a statistical

variance greater than 40% in their probabilities over all

time-stamps. This allowed inspection of specific issues

related to Runtime Errors, the Graphics Library and even

discovery of a well-known bug called “CPU may be

pegged”. We note through the trends that the discussion

of these issues declined with the release of Android

Gingerbread, which introduced a new concurrent garbage

collector. Thus, we were able to speculate using the trends

that with the release of Gingerbread may have resolved

many runtime and graphics related issues. We saw how

trend peaks and trenches can cluster together at the same

point in time, in vertical lines. Based on these results we

believe that modeling discussions over time between

developers can give us valuable insight into the state of

the project. Future work includes applying formal analysis

techniques to the trend lines presented.

REFERENCES

[1] Android Open Source Project - Public Issue Tracker. http://co
de.google.com/p/android/issues/list

[2] D. Hall, D. Jurafsky, and C. Manning, “Studying the history of
ideas using topic models,” in EMNLP ’08: Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, Honolulu, Hawaii, 2008, pp. 363–371.

[3] Android 2.3 Gingerbread - http://developer.android.com/sdk/and
roid-2.3 .html

[4] “CPU may be pegged” Bug description on Stackoverflow -
http://stackoverflow. com/questions/ 3112284/nexus-one-android-
cpu-may-be-pegged-bug

[5] McCallum, Andrew Kachites. "MALLET: A Machine Learning for
Language Toolkit." http://mallet.cs.umass.edu. 2002.

[6] Android 2.3 Platform and Updated SDK Tools, Android
Developers Blog, http://android-developers.blogspot.com/2010
/12/android-23-platform-and-updated-sdk.html.

[7] Java R Interface - http://www.rforge.net/JRI/

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet

allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.
[9] G. Casella and E. I. George, “Explaining the Gibbs Sampler,” The

American Statistician, vol. 46, no. 3, pp. 167–174, 1992.

[10] E. Shihab, Y. Kamei, and P. Bhattacharya, “Mining Challenge
2012: The Android Platform,” in The 9th Working Conference on

Mining Software Repositories, 2012, p. to appear.

