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Abstract—Modern applications make heavy use of third-party li-
braries and components, which poses new challenges for efficient
dynamic analysis. To perform such analyses, transitive dependent
components at all layers of the call stack must be monitored
and analyzed, and as such may be prohibitively expensive for
systems with large libraries and components. As an approach to
address such expenses, we record, summarize, and reuse dynamic
dataflows between inputs and outputs of components, based on
dynamic control and data traces. These summarized dataflows
are computed at a fine-grained instruction level; the result of
which, we call “dynamic dependence summaries.” Although static
summaries have been proposed, to the best of our knowledge,
this work presents the first technique for dynamic dependence
summaries. The benefits to efficiency of such summarization may
be afforded with losses of accuracy. As such, we evaluate the
degree of accuracy loss and the degree of efficiency gain when
using dynamic dependence summaries of library methods. On
five large programs from the DaCapo benchmark (for which no
existing whole-program dynamic dependence analyses have been
shown to scale) and 21 versions of NANOXML, the summarized
dependence analysis provided 90% accuracy and a speed-up
of 100% (i.e., ×2), on average, when compared to traditional
exhaustive dynamic dependence analysis.

I. INTRODUCTION

As the needs of society are increasingly accomplished
with software systems, and those software systems become
more complex and interrelated, software developers are, to
an increasing extent, building components of software that
interact with and build upon existing software components.
Rather than writing all needed functionality from the low-level
operating system to the high-level client interfaces, developers
regularly use features that were developed by others, provided
by components such as APIs, libraries, middleware, and in-
frastructures. Today’s reality is a scenario that was predicted
by McIlroy [11] in the 1960s.

Numerous researchers have identified some of the chal-
lenges that can be faced when depending upon and assem-
bling existing components, often referred to as “Components,
off-the-shelf” or COTS. One of the common challenges to
reusing third-party components is that analysis tasks become
increasingly expensive as the extent and depth of component
reuse increases (e.g., layer upon layer of transitive component
reuse). To properly analyze the program, the effects of the
infrastructure must be understood. As such, complete analysis
should also analyze all transitively underlying components to
determine how they affect the program under test.

Orso et al. [14] discussed some of the challenges of per-
forming analysis in the presence of external components and
proposed abstract representations, i.e., metadata, to provide

information about component functionality. Later, Orso et
al. [13] extended these ideas for component metadata by
specifying a concrete metadata scheme to enable regression-
test selection in the presence of components. Although Orso’s
solution for regression-test selection provides a powerful solu-
tion for that specific task, such challenges extend to many other
(more heavyweight) dynamic software-analysis tasks. For ex-
ample, when performing a dynamic dependence analysis, the
analysis needs to trace data flows through any encountered
libraries and components during the whole execution. Fre-
quent profiling of methods in these libraries and components
contributes extensively to the already-large run-time costs,
making the analysis prohibitively expensive for large-scale,
long-running applications. For example, our experiments show
that recording a whole dependence trace for DaCapo antlr
with even small workloads requires more than 20 hours. The
analysis time can be reduced to less than 2 hours if the library
methods (in rt.jar) are not instrumented.

An important technique to reduce the analysis costs and
provide such metadata is to summarize the behaviors of these
components. Once generated, summaries are then applied
during future executions to improve analysis efficiency. In fact,
summary-based analysis has been extensively studied in the
static analysis community, and various techniques (such as [4],
[17], [18], [20], [26], [28]) have been developed to summarize
procedural effects to achieve both modularity and efficiency.
However, static summaries provide conservative overapproxi-
mations when describing heap data effects. For example, such
summaries are often imprecise in modeling heap locations and
distinguishing among array elements, making it particularly
difficult for a dynamic analysis to use.

In this paper, we propose to compute summaries dynam-
ically to improve the efficiency of dynamic analyses and
to provide precise dependence metadata. Summaries gener-
ated over representative runs of the selected library methods
are abstracted and applied in the analysis of a program
that invokes these methods, leading to substantially reduced
analysis running time and trace size. In this paper, we use
dynamic dependence analysis as an example, and show how
to compute dynamic dependence summary information to
enable developers to characterize and capture external effects
of reused components, for modern object-oriented languages.
As dependence analysis provides a basis for a variety of
dynamic techniques, such as program slicing [29], bloat anal-
ysis [25], tainting-based information flow analysis [12], [27],
and potential parallelism detection [6], our technique provides



a mechanism to provide increases in efficiency (in terms
of time and space) with the potential tradeoff of accuracy
loss. This work provides the first technique for producing
dynamic summaries and evaluates the tradeoff between speed
and accuracy.

To evaluate, we implemented our summary-based dynamic
dependence analysis and performed two experiments. The first
experiment evaluates the efficiency and cost gains by reusing
external component analysis on large programs to which no
existing dynamic dependence analyses have been shown to
scale. The second experiment examines the analysis accuracy
of using the summarized metadata versus performing exhaus-
tive analysis through all external components. Our experiments
show an accuracy of 90% and a speed up 100% (i.e., ×2), on
average, when compared with traditional, exhaustive dynamic
dependence analysis.

The main contributions of this work are:
1) Definition of the technique for producing summarized

analysis results for software components, which can
enable improved efficiency of subsequent analysis tasks.

2) Designation of the process by which developers can
capture and encode component analysis results, in the
form of dynamic dependence summaries, and then reuse
those summaries for future analysis tasks.

3) Evaluations of the impact of utilizing such summary
metadata for dynamic analyses, in terms of both effec-
tiveness and efficiency.

II. MOTIVATION AND CHALLENGES

Motivating Example. We now present a motivating example
program that will be used throughout the paper. Figure 1(a)
shows the simple program containing the implementation of a
data structure IntList, and a client that creates and uses two
IntList objects (line 21 and 22). Lines 26–29 show a loop,
each iteration of which adds an element into the IntList
object created in line 22. Lines 33 and 34 retrieve elements
from the two IntList objects, respectively.

Figure 1(b) shows the dynamic data dependence graph of
the program. Each node in the dependence graph is represented
by the line number of a source code statement, annotated with
an integer i representing the ith execution of the statement.
Each edge represents a data dependence relationship between
two statement executions. A dashed-line box excapsulates
nodes and edges in a single method execution. In this paper,
we address the summarization of the data dependence rela-
tionships. Summaries for control dependence can be similarly
computed, and will be described in the future work.

A typical object-oriented application makes heavy use of
libraries and frameworks, such as class IntList in our ex-
ample. Library methods (such as add and get) are frequently
executed; tracking and profiling all their executions can be
extremely expensive. For instance, the loop in line 26 may
iterate for a great number of times, leading to a prohibitively
large execution trace and dependence graph.

A natural idea to reduce the profiling cost would be to
summarize the effects of such library methods and apply the

summaries when they are invoked. Summaries can be com-
puted via static analysis, as proposed by Horwitz, Reps, and
Binkley [7], by summarizing all possible statically computed
dependence relationships between the inputs and outputs of a
method. When a library method is invoked during a dynamic
dependence analysis, the statically computed summaries can
be applied to find the appropriate dependence relationships,
while avoiding the dependence profiling of the library method.

However, the overly-conservative modeling in a static analy-
sis can lead to rather imprecise summary information (e.g., [9],
[31]). For example, a typical static analysis unifies all possible
effects of the invocation of a polymorphic method resulting
in (spurious) dependence relationships between the site of
the method invocation and the instructions in all possible
implements that realize the polymorphic method in question.
Dynamic analyses based on such spurious relationships may
not produce useful information, because polymorphism is a
widely used feature of object-oriented programming.

We propose to compute summaries using dynamically ob-
served information. We envision that such dynamic summaries
may be computed in the following two ways. (1) The dynamic
information may be generated and recorded in a separate train-
ing phase in the from of execution traces, using a test suite; the
dependence information and subsequently the summaries are
computed from the execution traces and stored to a disk file for
use in a future dynamic dependence analysis. (2) Alternatively,
the dependence information and thus, the summaries may be
computed entirely online, i.e., during execution, and then be
used later in the same execution. For instance, for the program
in Figure 1, we can use the first execution of add (or get) to
compute its dependence summary and apply it to reduce the
profiling cost of its second execution. While the first approach
to compute summaries is used in this work, it can be easily
modified to adopt the second approach. We now present the
challenges against computing dynamic-based summaries.

Challenge 1: Defining Dependence Summaries in Java.
Horwitz et al. [7] pioneered the work of summary-based de-
pendence analysis—a summary edge of a procedure connects
an input parameter i with an output parameter o, abstracting
away intermediate dependence relationships inside the proce-
dure. This summary edge indicates that the value in input i
may contribute (directly or transitively) to the computation
of the value in output o. While we use a similar idea in
this work, the handling of modern object-oriented languages
like Java imposes many new research challenges that none of
the existing techniques have yet addressed. For example, the
notions of the input and output of a Java method can be much
broader than those discussed in [7], because the method can
access not only its parameters (i.e., passed into the method
from its caller), but also (potentially) all objects reachable
from them. In this paper, for a given method, the inputs are
considered as a set of (heap or stack) locations that existed
before the call and that can be read in the call, and the outputs
are considered as a set of locations that can be written in the
call and that will still exist after the call.



1  class IntList{
2    int[] arr;
3    int size;
4    IntList() {
5        int[] tmp = 

new int[100]; 
6        this.arr = tmp; 
7        this.size = 0; }
8    void add(int i){ 
9        int t = this.size;
10      int[] a = this.arr;
11      a[t] = i;
12      t = t + 1;  
13      this.size = t;
14   }
15  int get(int i){
16     int[] a = this.arr;
17     int ret = a[i]; 
18     return ret;
19  }  }

20 void main(){
21    IntList k = new IntList();
22    IntList l = new IntList();
23    int num = 1;  
24    k.add(num);
25    int j = 0;
26    if (j < num) { 
27        l.add(j);
28        j ++;
29        goto 26; 
30    }
31    …
32    int s = 0;
33    int r1 = k.get(s);
34    int r2 = l.get(s);
35 }

(a) Code example (b) Full dynamic dependence graph
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Fig. 1: Example program, dependence graph, and summaries.

Example. To illustrate, consider the top part of Figure 1(c)
that shows transitive data dependence relationships between a
set of input memory locations before the call at line 24 and
a set of output memory locations after the call. o21 denotes
the run-time IntList object created in line 21. Each box
represents a reference-typed field and each circle represents
a primitive-typed field. From the example, we can see that
the value contained in location o21.arr [0] (after the call)
depends, transitively, on the values in three other (heap or
stack) locations before the call: o21.size , o21.arr , and the
parameter i. The five transitive dependence edges (shown in
the middle part of Figure 1(c)) form the concrete dynamic
summary for the method add. Note that each such location in
the summary is named using a combination of a parameter
(root) object (e.g., o21) and an access path that specifies
how the location is reached from the parameter (e.g., arr ).
A data location unreachable from a parameter (or a global
variable) is either inaccessible in the method, or does not
escape the method and thus will have no impact beyond the
scope of the method. Of course, for a different execution of
the method, a different set of transitive dependence edges may
be generated. In this work, summary edges computed from
different executions in the training phase are combined to serve
as the eventual summary for the method.

Challenge 2: Abstracting Concrete Summaries. A concrete
dynamic summary contains information specific to the exe-
cution of the method where the summary is computed. For
example, the use of the concrete object o21 in the concrete
summary (the middle part of Figure 1(c)) prevents us from
applying and reusing the summary in the future execution of
add. For the summary of a specific invocation of a given
method, the concrete information should be replaced by ab-
stract information, such that, the reproduction of the concrete
information may be possible for all invocations of the method
in question, from the abstract information. In other words, the
abstraction of concrete summaries allows application of the
summaries for all invocations of the method, instead of specific

invocations. To do this, we propose to use symbolic names for
parameters. For example, the concrete object o21 is replaced
by a symbolic name p0, and the concrete stack variable i
is replaced by a symbolic name p1. A corresponding set of
abstract summary edges is shown at the bottom of Figure 1(c).

Challenge 3: Accounting for Varying Method Behavior.
An important observation on which our technique is based
is that while different executions of a library method may
handle different incoming data from different clients, their
behaviors in these executions often do not differ significantly.
Such behavioral consistency can be attributed to the relative
simplicity of many library methods, and that all behaviors
(in our case, data dependencies) may be realized in a small
number of executions.

However, a method invocation may take objects of different
types as parameters. Although these types may have the same
supertype, their fields can differ significantly, or they might
result in the execution of entirely different method implemen-
tations due to polymorphism, and thus abstract summaries
generated for one method execution may not be directly
applicable in a different execution.

When an abstract summary is generated, we additionally
record the type information of each parameter with the sym-
bolic name representing the parameter. Before a summary edge
is concretized (during the dependence analysis), we first check
whether the recorded type in the edge matches the type of its
corresponding actual parameter in the current execution, and
only apply those summaries that match.

Challenge 4: Precise Handling of Array Accesses. Precise
handling of array accesses can be critically important in the
dependence analysis of software. Particularly, when an abstract
summary involving an array access is applied at a method call,
we wish to understand precisely which array element is used
or defined inside the method execution. Without such infor-
mation, spurious dependence relationships may be generated
— any data retrieved from an array would depend on any
data added into the array. Precise handling of array accesses
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Fig. 2: Summary application at call sites in lines 27 & 34.

is challenging because the index used to access the array is
often not an output of the method, and thus, no summary will
contain its dependence information. To solve the problem, we
create a special symbolic name for each array index. If the
accessed array is an input or output of the method, the index
used to access the array is considered as a (special) output,
and thus the transitive dependence relationships leading to the
computation of the index would be included in the summary.
If the index is a constant value (i.e., its computation does not
depend on any method input), this constant value is recorded
in the summary. In our example, index t used in line 11 of
Figure 1(a) is abstracted by a symbolic name p0.arr.index,
which is dependent on the symbolic location p0.size. When
the summary is applied, we concretize p0.size to obtain its
run-time value (before a call to add), which will be used to
understand which array element is accessed during the call.

Example. Figure 2 shows the application of the summaries for
add and get at their second call sites (i.e., lines 27 and 34 in
Figure 1(a)), with a focus on how we recover the (transitive)
dependence relationship between the int value retrieved from
the IntList object (in line 34) and the one added into the
object (in line 27). Symbol pr in Figure 2(a) denotes the
symbolic name for the return variable in get. Figure 2(b)
shows the summary application process—all symbolic names
are replaced with their actual (run-time) locations. By compos-
ing the concretized summaries for add and get, we see that
there exists a transitive data dependence relationship between
r2 and j if the array indices involved in the summaries of add
and get are the same.

By tracking dependence for array indices, we see that the
array index in add is computed from o22.size and the array
index in get is computed from s, and hence, if a certain
condition holds between the values of o22.size and s, r2 will
depend on j. For most library classes (such as data structures
in java.util), different methods in the same data structure
often use the same algorithm to compute array indices from
the input(s). For instance, add and get in our example
directly use inputs as indices, while put and get in the Java
HashMap use the hashcodes of their input (key) objects to

compute array indices. Based on this observation, we assume
this condition is “equals”: if the values of the inputs on which
the array indices depend in the two summaries are equal, the
array elements accessed in the two methods are considered
to be the same. In our example (Figure 2(c)), therefore,
a transitive dependence relationship is added between the
statement that defines r2 (i.e., 341) and the statement that
defines j (i.e., 251), because the values of both o22.size
(before line 27) and s (before line 34) are 1. While “equals”
is sufficient for precise tracking of most methods in standard
Java libraries, this condition can be easily redefined by the
user to handle other (user-defined) data structures. Note that
one situation that cannot be appropriately handled is that a
range of array locations are accessed in the method. This case
of accessing multiple array locations is further discussed in
Section VIII.

III. APPROACH AND CONCEPTS

This section formally defines concrete and abstract de-
pendence summaries, and in this context, presents our core
technique that computes and uses summaries to improve the
efficiency of dynamic data dependence analysis.

Concrete Summaries. Let us first define the inputs and outputs
of a Java method. Note that our implementation treats static
fields as additional parameters to a Java method.

Definition 1: Heap Graph (HG). We use
c : m(a0, a1, . . . , an) to denote a call site c. If m is an
instance method, the receiver object is a0. For each actual
argument ai, we define a location graph gi, in which each
node is a heap location (i.e., a reference-typed or primitive-
typed field) in an object reachable from the root object
referenced by ai; each edge connects a parent heap location
(that references an object) and a child heap location (that is a
field in the object).

Note that the only way to access a node in gi during the
execution of m is to perform a sequence of field dereferences
on the root object. In Figure 1(c), we show two example HGs
reachable from parameter this of method add before and
after the execution of line 24. Note that the A set of all heap
graphs for the call site c is referred to as c’s accessible HG
set (AHGS), represented as Gc. Additionally, we use Gprec and
Gpostc to denote, respectively, c’s AHGS immediately before
and after the execution of c.

Definition 2: Input and Output Sets. For a call site of the
form c : m(a0, a1, . . . , an):
Ic = Gprec ∪ Pc, where, Ic is the input set, Pc is a set of

stack locations representing parameters passed into c.
Oc = Gpostc ∪Lc∪{r}∪{gr} , where,Oc is the output set, r

is the stack location containing the value to be returned, gr is
the HG defined by r (if r is of reference type), and Lc is a set
of integer indices used in the accesses of the arrays referenced
by heap locations in Gprec , Gpostc or gr.



Note that Pc is not part of the output set because Java
is a call-by-value language where the values of the actual
parameters cannot be changed by the method. The indices
used to access the arrays in the heap graphs are included in the
output set. Tracking these indices is necessary for the precise
handling of array accesses, as described in Section II. Based on
the definition of the input and output set, the concrete summary
for a method is defined as follows.

Definition 3: Concrete Dependence Summary. For a call
site of the form c : m(a0, a1, . . . , an), the concrete depen-
dence summary Sc for m with respect to c is a Cartesian set
Ic ×Oc. Each element of the set is a summary edge that goes
from a stack or heap location in the input set to a stack or
heap location in the output set, representing a transitive data
dependence relationship between values in these two locations
during the execution of c.

Abstract Summaries. As described in Section II (Challenge 2),
concrete summaries contain execution-specific information
and cannot be reused. Abstraction needs to be performed
to replace concrete information with some type of abstract
information, so that the abstracted summaries are applicable
to all other executions. The abstraction process has two steps.
In the first step, we replace each concrete HG node with a
combination of the root object and the access path through
which this node can be reached. The result of this step is a set
of access-path-based concrete summary edges, as shown in the
middle part of Figure 1 (c). In the second step we, replace each
concrete parameter object or variable with a symbolic name,
resulting in the final abstract summary that can be applied in
other executions of the method (as shown in the bottom part
of Figure 1 (c)). Note that in our implementation, these two
steps are combined in one single summary generation phase.
They are discussed separately in the paper for the clarity of
presentation.

Definition 4: Abstract Dependence Summary. For a call
site of the form c : m(a0, a1, . . . , an), pi denotes the symbolic
name for parameter ai. For an access-path-based concrete
dependence summary of the form

⋃
{oi.f0.f1 . . . f∗ 99K

oj .g0.g1 . . . g∗} (where oi and oj are the objects pointed to
by parameters ai and aj , and fk and gl are field names), its
corresponding abstract dependence summary is of the form⋃
{pi.f0.f1 . . . f∗ 99K pj .g0.g1 . . . g∗}.
For concrete summary edges involving array accesses, e.g.,

oi.f0.f1 . . . f∗[l] 99K oj .g0.g1 . . . g∗ and ok.h0.h1 . . . h∗ 99K
l, their corresponding abstract summary edges are
pi.f0.f1 . . . f∗[pi.f0.f1 . . . f∗.index ] 99K pj .g0.g1 . . . g∗ and
pk.h0.h1 . . . h∗ 99K pi.f0.f1 . . . f∗.index ,
where pi.f0.f1 . . . f∗.index is the symbolic name for index l.

Note that an HG node may have multiple access paths
from the root object. For each such access path used in the
method, we will generate a summary edge for it. Eventually,
abstract summaries computed for all call sites that invoke

method m during the training phase are combined and used
as m’s summary for the future dependence analysis.

Summary-Based Dependence Analysis. A summary-based
dependence analysis profiles the execution of all methods
except those that have abstract dependence summaries. Before
presenting the summary-based analysis, we first define regular
dynamic dependence analysis.

Definition 5: Dynamic Data Dependence Graph. A dy-
namic data dependence graph (V, E) has node set V ⊆ D×N ,
where each node is a static statement (∈ D) annotated with
an integer i (∈ N ), representing the i-th execution of this
statement. An edge from aj to bk (a, b ∈ D and j, k ∈ N )
shows that the j-th execution of statement a writes a (heap or
stack) location that is then used by the k-th execution of b,
without an intervening write to that location. If an instruction
accesses a heap location through v.f , the reference value in
stack location v is also considered to be used.

An example dynamic dependence graph is shown in Fig-
ure 1 (b). Based on the definitions of abstract summary and
regular data dependence graph, we give the definition of
summary-based data dependence graph.

Definition 6: Summary-Based Data Dependence Graph.
A summary-based dynamic data dependence graph (V, E ∪T )
is a regular dynamic data dependence graph augmented with
an additional set of transitive dependence edges T . There
exists a transitive edge from node aj to bk, if aj writes a
memory location l1 that belongs to the input set of a method
call and bk reads a memory location l2 that belongs to the
output set of the same call, and there exists a relationship
pi.f0.f1 . . . f∗ 99K pj .g0.g1 . . . g∗ in the abstract summary of
the invoked method, such that the heap location oi.f0.f1 . . . f∗
(before the call) is the same location as l1 and the location
oj .g0.g1 . . . g∗ (after the call) is the same location as l2.

A transitive dependence edge can also
be added from aj to bk if there exist two
pairs of relationships in the abstract summary
(pj .g0.g1 . . . g∗ 99K pi.f0.f1 . . . f∗[pi.f0.f1 . . . f∗.index ],
pk.h0. h1 . . . h∗ 99K pi.f0.f1 . . . f∗index ) and
(pr.v0.v1 . . . v∗[pr.v0.v1 . . . v∗.index ] 99K pm.q0.q1 . . . q∗,
pt.u0.u1 . . . u∗ 99K pr.v0.v1 . . . v∗.index ), such that
om.q0.q1 . . . q∗ is the same location as l2, oj .g0.g1 . . . g∗ is
the same location as l1, oi.f0.f1 . . . f∗ and or.v0.v1 . . . v∗
refer to the same array object, and values in ok.h0.h1 . . . h∗
and ot.u0.u1 . . . u∗ (used to compute indices) are the same.

As discussed earlier in Section II, two (abstract) array
slots of the form pi.f0.f1. . . . .f∗[pi.f0.f1 . . . f∗.index ] and
pr.v0.v1 . . . v∗[pr. v0.v1 . . . v∗.index ] are considered to be
the same location in an execution, if (1) the two concrete
array objects in locations oi.f0.f1 . . . f∗ and or.v0.v1 . . . v∗
are the same, and (2) the values of the inputs that the two
indices depend on (i.e., ok.h0.h1. . . . .h∗ and ot.u0.u1. . . . .u∗
in the definition) are the same. A transitive edge is not added



if one or both of the indices depend on multiple inputs,
because it is unclear how the indices are computed from
these inputs and how to compare their values. Note that
this treatment can potentially introduce both unsoundness and
imprecision. However, as discussed in Section VIII, it is both
precise and lossless for many library methods (especially in
the Collections framework).

IV. ANALYSIS IMPLEMENTATION

This section presents the details of our implementation of
the summary-based dependence analysis. We perform load-
time bytecode instrumentation for non-JDK classes using
ASM [2], a Java bytecode manipulation framework. In con-
trast, we instrument the classes in the standard Java library
(JDK) prior to execution—several of these classes cannot be
instrumented during load time due to the technical require-
ments of the JVM to load them prior to the instrumenter. The
goal of the instrumentation is to produce a detailed trace that
records the execution of each instruction in the program and
the heap/stack location it accesses. We instrument to record
the execution of every instruction in the program and the
heap/stack locations that each accesses. With the trace, we
construct the dynamic data dependence graph, which then
enables the computation of dynamic slices. We assign a unique
ID to each run-time object, which is used to identify the object
and its fields in the execution trace.

The computation and use of the dynamic dependence sum-
maries are performed in the following phases.

Phase I. Summary Generation in the Training Execution.
We produce the abstract summaries for the methods being
summarized (these can be user-specified in a configuration
file, by method, class or package) by analyzing the execution
traces. For each method m, we find all instances of m’s
execution, and for each instance in the trace, we use a worklist-
based algorithm to compute an abstract summary according
to the approach and definitions in Section III. The result
of the summary generation is a mapping of inputs (formal
method parameters or accessible public fields) to outputs
(formal method parameters or accessible public fields) that
they influenced, expressed as abstract summary edges.

Phase II. Summary Application in Dependence Analysis.
To apply the summaries to dynamic dependence analyses, the
client would choose to instrument her test case (i.e., execution)
with knowledge of the previously gathered summaries. In the
client’s execution, the instrumented execution would check
each method call to determine if a summary for it exists. If the
summary is not provided for a method call, the execution and
instrumentation proceeds with regular dependence profiling.
However, if a summary does exist for the method: (1) the
abstract summary edges are obtained, (2) the actual inputs and
outputs are matched to the LHS and RHS symbolic names of
the summaries, and then (3) the concretized summary edges
are recorded to the trace. To illustrate, consider the example
of applying summaries at the second call of get (line 34
in Figure 1 (a)). Abstract summary edges are concretized

into o22.arr [o22.arr .index ] 99K r2 and s 99K o22.arr .index
before being recorded into the trace.

Phase III. Dependence Graph Computation and Use. A
dynamic dependence graph is computed by recovering de-
pendence relationships from the trace, as described in Defi-
nition 5. When (concretized) summary edges are encountered,
the location matching approach described in Definition 6 is
used to recover the missing relationships. Using this dynamic
dependence graph, the client can perform dynamic analyses,
such as dynamic slicing.

V. EVALUATION

To evaluate how the reuse of dynamic dependence sum-
maries affects analysis, we implemented our technique and
performed two experiments. The first experiment is designed
to assess the extent of cost savings that can be realized with
dynamic dependence summaries with respect to exhaustive in-
strumentation. The second experiment is designed to determine
how the use of dynamic dependence summaries affects the
accuracy of a dynamic dependence analysis. As an instrument
of evaluation, we used dynamic slicing to find faults in test-
case failures with both exhaustive and summarized dynamic
dependence graphs. We designed these two experiments to
help inform future researchers and software developers of the
tradeoffs involved in choosing either the reuse of dynamic
dependence summaries or exhaustive analysis of all external
components.

The goal of these experiments is to answer the following
research questions.

RQ1: How does the reuse of dynamic dependence summaries
affect the costs of dynamic analysis?

RQ2: How does the reuse of dynamic dependence summaries
affect the accuracy of dynamic analysis?

Experimental Subjects. We performed all experiments on a
quad-core Intel i5-2430M 2.40GHz machine, running 32-bit
Ubuntu (version 12.04). We used the OpenJDK 6 JVM with
a maximal heap size of 1GB. We summarized all methods in
the standard JDK (i.e., rt.jar).

We performed our performance evaluation using five large
programs—ANTLR (> 35KLOCs), BLOAT (> 41KLOCS),
FOP (> 102KLOCs), JYTHON (> 245KLOCs), and PMD (>
60 KLOCs)—from the DaCapo Benchmark Suite [1], which is
provided with inputs to facilitate performance benchmarking.
We performed our accuracy evaluation using the NANOXML
program (> 7KLOCs) and its test cases and bugs, which are
provided by the Subject-artifact Infrastructure Repository [5].
We utilize 21 versions of NANOXML: one version for training
the summaries, and 20 subsequent, faulty versions for evalua-
tion. We compute and reuse dynamic dependence summaries
for all external components, outside of the NANOXML code,
which includes large portions of the Java Standard Library.

Independent Variable. We use a single independent variable
for both Experiment 1 and Experiment 2: the dynamic slicing
technique used for performing the analysis. We performed our
dynamic dependence analysis in two ways:



Treatment 1: Exhaustive Analysis. All components that are executed,
whether core or external, are instrumented and analyzed.

Treatment 2: Summary-based Analysis. Only the program under test is
instrumented, and summaries from all external components are reused.

Experiment 1: Analysis Efficiency. In Experiment 1, we
investigate the impact of reused dependence summaries on the
costs involved in performing dynamic dependency analysis.
Experiment 1 Dependent Variables. We assess the costs of the
dynamic slicing techniques in two ways:
Metric 1: Execution-Trace Size (S). Size of the execution trace required

for each analysis.
Metric 2: Analysis Running Time (T). Time to run the dependence anal-

ysis.

Experiment 1 Results. Five large benchmarks from the DaCapo
benchmark set (2006 release) were chosen for this experi-
ment.1 Each benchmark was run for one iteration with the
large workload. The exhaustive analysis could not scale to
any of these benchmarks—running the analysis with trace
generation enabled could not finish in 24 hours for even
the smallest program (i.e., FOP) in this set. Disk I/O and
frequent OS context switches obviously became the bottleneck
that caused a significant slowdown. In order to enable the
comparison, we slightly modified the exhaustive analysis and
ran it twice, once to generate (small) traces only for summary
computation and once to collect performance statistics without
generating any trace. In the first run, traces were generated
for 10 random executions of each library method and used
to compute summaries. This did not take too long because
the logs for the majority of the method invocations were not
dumped to disk. As discussed in Section II, library methods
often exhibit simple behaviors and 10 executions may be
sufficient to summarize their dependence effects. In fact, this
handling describes an intended scenario for summary usage—
summaries are generated in a small number of executions
of the selected methods and applied for a large number of
invocations of these methods in a (future) analysis.

We collected the performance statistics in the second run
where trace generation was completely disabled (while the
instrumented code was still executed). Although we did not
produce a trace in this run, we measured the size of the trace
by maintaining a global size counter, which is increased by
the size of a log message every time the message needs to be
written. To enable a fair comparison, the performance statistics
for the summary-based analysis were also collected in the
same manner. It is important to note that the summary-based
analysis was scalable even when the trace was generated (it
finished in 3 hours for all the benchmarks).

These results show that performing full instrumentation that
includes both application code and external-component code
incurs an average 112× runtime overhead. The summary-
based approach successfully reduced this overhead to 43×,
which provides a greater than 2× speed up over exhaustive.
In a real-world situation where all traces need to be generated,

1The DaCapo results are limited to the subjects that were scalable to a
24-hour computational requirement for the exhaustive analysis. Subsequent
iterations of this work will include results that relax this requirement.

TABLE I: Experiment 1 Results. TO is original running time of
the program, TE|S and SE|S are running times of dependence
analysis and trace size for each technique.

Exhaustive Summary
TE SE (# instr. TS SS (# instr.

Subject TO (sec) (sec) ×109) (sec) ×109)
ANTLR 10.4 451.3 4.2 248.5 2.6
BLOAT 28.3 9061.5 214.8 2520.7 79.5
FOP 2.7 68.6 0.7 35.5 0.3
JYTHON 68.6 2873.9 51.9 1922.8 38.8
PMD 11.3 1448.5 28.4 718.7 16.1

the overhead reduction can be much larger than this number.
Summary-based analysis provides trace sizes that are, on
average, 44% smaller than the exhaustive trace sizes.

These cost savings of over twice as efficient were achieved
by summarizing only one common library of each of the five
DaCapo programs: the standard JDK library. These programs
each use several other large external libraries that we did
not summarize. When summarizing all libraries, the savings
enabled would be much greater, as exhibited in Experiment 2.

Experiment 2: Analysis Accuracy. Motivated by the savings
found from Experiment 1, we next investigated the extent to
which these savings are realized at the expense of accuracy
for client analyses. In Experiment 2, we investigate the impact
of reused dependence summaries on the accuracy of dynamic
analysis, specifically dynamic slicing for debugging. As dis-
cussed in Section VIII, summary-based dynamic dependence
analysis can be both unsound and imprecise. However, the
degree to which this affects the results of analysis, in practice,
is yet to be known. As such, this experiment is designed to
answer this question, at least for our experimental data.

Using the training version of NANOXML, and the 20 subse-
quent faulty versions, we investigate this issue by performing
backward dynamic slicing to determine accuracy of the slice.
We injected faults at the points in the program at the beginning
of the execution — during the reading of the data files.
We identified our slicing criterion, for each of the 20 faulty
versions by observing the output stream and identifying the
first point that the output from the faulty version differs from
the output of the correct version. That is, we define the slicing
criterion as the output instruction (and its outputted data) being
executed at the moment that the test-case output first violates
the test oracle (e.g., the first character difference). We then
slice based upon that instruction, the variable that was used
to hold the externally observed incorrect data, and the specific
execution instance of that instruction (remember, our traces
include all executions instances of each instruction). As such,
the faults that we slice are “deep” — the fault execution occurs
at the beginning of the trace, the propagation of the fault’s state
infection spans the entire execution, and the slicing criterion is
placed at the output manifestation at the end of the execution.

Experiment 2 Dependent Variables. We present our results
with the following five metrics:

Metric 1: Found Bugs. The ratio of the dynamic slices that include the
fault. This metric determines the degree of unsoundness that the
summary-based dynamic analysis brings.



TABLE II: Experiment 2 Results

Metric Exhaus-
tive

Sum-
mary

Found Bugs (ratio) 20/20 18/20
Mean Size of Trace (# of instruction
instances)

392946.65 143150.7

Mean Size of the Slice (# of
instructions)

239.95 213.45

Mean Runtime Overhead (ratio) 3838.39 41.69
Mean Slicing Time (milliseconds) 2608 1899

Metric 2: Size of Trace. The size of the trace file, in terms of the number
of instruction instances, that is needed to perform the slicing.

Metric 3: Size of the Slice. The size of the resulting slice, as a set of
source-code instructions.

Metric 4: Runtime Overhead. The slowdown of the original
non-instrumented program, in terms of a multiplicative
factor of the original time. The overhead is computed as
(instrumented time)−(non-instrumented time)

(non-instrumented time) .
Metric 5: Slicing Time. The time to required to compute the dynamic

slicing.

Experiment 2 Results. We present our results for Experiment 2
in Table II and Figures 3–6. Table II shows the aggregated data
across all 20 bugs, whereas Figures 3–6 break down results per
bug. Figure 3 presents the size of the traces for each bug, for
each technique, in terms of the number of instruction instances
composing the execution trace. Figure 4 presents the size of the
resulting slices for each bug, for each technique, in terms of the
unique source-code instructions in the slice. Figure 5 presents
the multiplicative factor of the overhead of the necessary
instrumentation over the non-instrumented version. Finally,
Figure 6 presents the time required to compute the dynamic
slice. In each of these sub-figures, lines are drawn to help the
reader with tracking the results for each technique — they do
not denote a continuous range between bugs.

On average, the costs for exhaustive slicing are substantially
more than the costs for summarized slicing. Particularly, the
runtime overhead costs of exhaustive slicing were dramatically
greater than those of summarized slicing — and these are costs
that would be incurred for every execution to be sliced.

When examining the bugs that were found, we found that
18 out of the 20 bugs were localized in the dynamic slice
that we computed with the summary-based technique. Such
a localization rate is attributed to faults propogating through
multiple dependency chains, and as such, the ability to slice
back to the fault depends on at least one such chain persisting.
The exhaustive slicing technique found 100% of the bugs, as
expected. The summary-based technique missed 2 out of the
20 bugs, and this was due to a missing dependency from the
training of a summary.

VI. ANALYSIS AND DISCUSSION

In this section we present a discussion of both studies to
draw more general conclusions. In addition, we discuss each
research question that motivated our evaluation, in order. In
every measure of performance costs, we found that as a whole,
the use of summarized dynamic data substantially reduced
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costs. When examining the results from Experiment 1, we find
that the exhaustive technique often exceeded our thresholds for
costs, whereas the summary-based technique was efficient.

As such, to RQ1, we assess: The reuse of dynamic
summaries caused the costs involved in performing dy-
namic dependency analysis to be significantly reduced.

In terms of analysis accuracy, we evaluated a debugging task
using dynamic slicing. When examining the results from Ex-
periment 2, we find that although we are utilizing summarized
results from past executions to approximate the dependencies
of external components, the summarized slicing technique
produced accurate results: 90% of the bugs were found with
the summary-based technique.

As such, to RQ2, we assess: The reuse of dynamic
summaries caused a small loss of accuracy as a conse-
quence of the gains in performance.

Taken as a whole, our results suggest that the reuse of
dynamic summaries can provide a way to make dynamic de-
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pendency analysis more feasible for real-world use, with mod-
est losses in accuracy. In software-development projects that
accept such small inaccuracies (e.g., in non-critical systems),
or for analyses that are more heuristic in nature (e.g., bloat
analysis), our results suggest that the tradeoffs favor reuse of
dynamic summary information for external components.

Threats to Validity. Threats to external validity arise when
the results of the experiment are unable to be generalized to
other situations. In this experiment, we evaluated the impact of
using dynamic dependency summaries on two client programs,
with their set of dependent external components, and thus we
are unable to definitively state that our findings will hold for
programs in general. However, we are confident that these
results are indicative of the impacts of such summarization.
The external components in this study are the Java Standard
Library, which is a dependency that many other programs will
also have and thus the effects on efficiency and effectiveness
of dynamic summarization of that common library is likely to
hold for those programs. Moreover, the significant gains ex-
hibited in our results gives strong evidence that our approach,
at least, shows promise for use in practice.

Threats to construct validity arise when the metrics used
for evaluation do not accurately capture the concepts that
they are meant to evaluate. Our experiments measured the
costs involved in performing tracing and dynamic slicing in
terms of computational time and data storage. Although our
results give an indication of the degree of such costs, our
implementation can be greatly optimized in both regards.
Our tracing information is verbose and our implementation
is not optimized. However, this limitation does not affect the
overall result, as this same implementation was used for both
treatment techniques; i.e., the direction and magnitude of the
difference between the results should not significantly change
when these factors are optimized. Also, our experiments mea-
sured the accuracy of the slicing techniques in finding faults.
Although these metrics give an indication of the accuracy of
our results, they do not give a sense for how these will affect
either developer time or client analyses that build upon such
results. Further studies will need to be conducted to assess the
impacts on such clients of these analyses.

VII. RELATED WORK

While there exists a body of work related to the proposed
technique, discussion in this section focuses on techniques that
are most closely related to ours.

Summary-Based Program Analysis. Procedural summaries
have been computed and used widely in the static analysis
community to achieve modularity and efficiency. Summary
functions for interprocedural analysis date back to the func-
tional approach in the work by Sharir and Pnueli [21],
with refinements for Interprocedural, finite, distributive, subset
(IFDS) problems from Reps et al. [19] and for interproce-
dural distributive environment (IDE) dataflow problems from
Sagiv et al. [16]. Yorsh et al. [28] use conditional micro-
transformers to represent and manipulate dataflow functions.
Rountev et al. [17], [18] propose a graph representation of
dataflow summary functions, that generate and use summaries,
to reduce the cost of whole-program IDE problems. Xu et
al. [26] propose a summary-based analysis that computes
access-path-based summaries to speed up the context-free-
language (CFL)-reachability-based points-to analysis. Dillig
et al. [4] propose a summary-based heap analysis targeted
for program verification that performs strong updates to heap
locations at call sites. Ranganath and Hatcliff [15] statically
analyze the reachability of heap objects from a single thread,
for slicing concurrent Java programs. Salcianu and Rinard [20]
propose a regular-expression based, purity and side effect
analysis for Java, to characterize the externally visible heap
locations that a given method mutates. This is similar in
spirit to the heap location-based dependence summarization
as proposed in our work. Inspired by such static analyses, the
work presented in this paper, is the first technique to compute
and use dynamic dependence summaries. Dynamic depen-
dence summaries, can potentially better inform dependence
information more precisely than static dependence summaries,
by leveraging information collected at runtime.



Dynamic Slicing. Since first being proposed by Korel and
Laski [9], dynamic slicing has inspired a large body of work
on efficiently computing slices and on applications to a variety
of software engineering tasks. Early work from Kamkar et
al. [8] introduces the theory behind summary-based slicing
for a stack-only language. Our approach attempts to be more
general; in that it handles all features of a modern object-
oriented language. A general description of slicing technology
and challenges can be found in Tip’s survey [22] and Krinke’s
thesis [10]. The work by Zhang et al. [30]–[34] considerably
improved the state of the art in dynamic slicing. This work
includes, for example, a set of cost-effective dynamic slicing
algorithms [31], [33], a slice-pruning analysis that computes
confidence values for instructions to select those that are
most related to errors [30], a technique that performs on-line
compression of the execution trace [32], and an event-based
approach that reduces the cost by focusing on events instead
of individual instruction instances [34]. Apart from Zhang’s
work, Wang and Roychoudhury [23] develop optimizations to
compress bytecode execution traces for sequential Java pro-
grams resulting in space efficiency. Moreover, they develop a
slicing algorithm, applicable directly on the compressed byte-
code traces. Wang and Roychoudhury’s work on Hierarchical
Dynamic Slicing [24] aims at guiding the programmer through
large and complex dependence chains in a dynamic slice, with
debugging as the primary application. Deng and Jones [3]
propose a dynamic dependency graph that encodes frequency
of inferred traversal in order to prioritize heavily trafficked
flows. Xu et al. [25] propose an abstraction-based approach,
to scale a class of dynamic analyses that need the backward
traversal of execution traces. This approach employs user-
provided analysis-specific information to define equivalence
classes over instruction instances, so that dynamic slicing
can be performed over bounded abstract domains instead
of concrete instruction instances, leading to space and time
reduction. Our technique achieves efficiency from a different
angle—we use summaries generated for library classes to
speed up general dynamic data dependence analysis, and thus,
all dynamic analyses that need dependence information may
benefit from this technique.

VIII. LIMITATIONS AND FUTURE WORK

Unsoundness and Imprecision. It is important to note that the
summary-based dynamic dependence analysis can introduce
both unsoundness and imprecision. On one hand, the quality
of an abstract summary relies on the coverage of the tests
used to train the summary. Thus, a summary may miss certain
dependence relationships due to the lack of test cases. On the
other hand, the abstract summary aggregates information from
multiple executions of the method. Thus, the application of
the summary for a specific invocation may generate additional
spurious dependence relationships that would not have been
added in a regular dependence analysis.

To reduce these negative effects, it is important to find
methods that are suitable for summarization. Our experience

shows that API methods in large libraries may be good sources
of summarizable methods because they often do not mutate
client objects, their behaviors are often relatively simple,
and even similar under different clients. In our evaluation
(Section V), the entire Java Standard library is summarized
to speed up the dynamic slicing of a real-world application
with limited loss (10%) in accuracy to find bugs via slicing.

Future work will develop ways to assess suitability of
summarization for methods. Also, adequacy criteria will be
developed to inform when the training phase has sufficiently
exercised the behaviors in order to summarize them.

Abstracting Multiple Array Accesses. Although our technique
improves upon existing work in distinguishing array index
accesses, this improvement is limited to method calls that
access only a single index. We found that most of our studied
methods accessed a single index. Even for methods that access
multiple array locations (such as addAll in many of the
java.util.* methods), they are often implemented by
invoking methods that access a single array location (such
as add) multiple times. Hence, our technique can precisely
handle array accesses for most of the common and frequently-
used data structure methods.

Future work will provide yet further improvement to array
summarization by developing ways to summarize access to
multiple array indices. We envision summary notation con-
taining logic that abstracts array access ranges.

Additionally in future work, we will evaluate on a larger set
of applications; and extend it to address scalability issues
for other dynamic analyses (e.g., bloat- and change-impact
analysis). Further, we will investigate how dynamic summaries
compare with static summaries for various expensive dynamic
analyses in terms of performance and effectiveness.

IX. CONCLUSIONS

This paper presents a novel summary-based dynamic anal-
ysis approach to speed up a class of dynamic analysis tech-
niques for modern applications that use large object-oriented
libraries and components. During training, summaries are pro-
duced for library methods, which are later used for dependence
analysis for improved efficiency. To compute the summary
for a library method, we first extract concrete dependence
summary edges from its execution trace, and then abstract
them with symbolic data. This symbolic data is then used
during subsequent analysis by replacing symbolic names with
the new concrete data. Our experimental results on real-world
software found that applying these summaries in the depen-
dence analysis can significantly save costs despite causing only
a modest loss of accuracy.
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